--%>

Define thermal energy, How to calculate thermal energy?

The thermal part of the internal energy and the enthalpy of an ideal gas can be given a molecular level explanation.


All the earlier development of internal energy and enthalpy has been "thermodynamic". We have made no use of the molecular level understanding of energy that we obtained in the energy crisis. There you recall, we found that we could calculate the thermal energy contribution U- U0 for molecularity sample systems such as ideal gases. Now this thermal energy will be released to the thermodynamic internal energy and enthalpy.

The energy of a system when only the lowest available energy levels are occupied is derived on the concept of energy level. This is the energy that the system would have if the temperature were occupied. This is the energy were lowered to absolute zero and the system did not change its physical form. The thermal energy U- U0 is the additional process energy that the system would acquire if the temperature were raised from this hypothesis zero temperature form and the particles distributed thermodynamical energy themselves throughout the energy levels.

Thermal enthalpy H - H0: the general relation between enthalpy and internal energy is H - H0

For some liquids and solids at all ordinary pressures, the change in the PV term is small compared to changes in the H and U terms. As a result, at any temperature the enthalpy and internal energy are effectively equal. Thus H = u, H0 = U0, and H - H0 = U - U0. For standard state thermal enthalpies and internal energies we have 

H0T - H00 + U0T  - U00  [liquid or solid]

For gases, ideal behavior allows the PV term for a sample containing 1 mol of gas molecules to be equated to RT. When only the lowest energy states are compared, as occurs at the thermal energy results we can be converted to enthalpies by addition of RT. For standard state thermal enthalpies and internal energies we have various values for the thermal enthalpy at T = 298 K and for several other temperatures for some elements and compounds are included in this phenomenon.

Instance: nitrogen oxide, NO, forms from oxygen and nitrogen in internal combustion engines. (This reaction proceeds to a sufficient extent at the high temperatures of the engine for NO to be prodcue4d in amounts that cause serious pollution problems. Part of understanding the formation and decomposition of NO is based on the enthalpy change for the reaction at high temperatures, where NO is formed and at lower temperatures where it breaks up to N2 andO2.)

Calculate ΔH°0 and ΔH°2000 for the reaction in which NO is formed from its elements.

Answer: we begin by obtaining ΔH°0 as:

1070_molecular thermal energy.png             

Now at any temperature, such as 2000K, which is representative of high temperatures at which calorimetric methods are not applicable, we have for N2, for example, 2000 - H°0 = (H°2000 - H°298) + (H°298 - H°0) = 56.14 - (- 8.67) = 64.81 kJ. Then:

29_molecular thermal energy1.png                     

These values give:

ΔH°2000 = ΔH°0 + Δ(H°2000 - H°0)

= 179.50 + 1.41

=180.91 kJ


Notice that ΔH for the reaction can be deduced for any temperature at which the thermal energies of the reactants and the products can be calculated.

   Related Questions in Chemistry

  • Q : Explain the molecular mass with respect

    During the formation of polymers, different macromolecules have different degree of polymerisation i.e. they have varied chain lengths. Thus, the molecular masses of the individual macromolecules in a particular sample of the polymer are different. Hence, an average value of the molecular mass is

  • Q : Linde liquefaction process Liquefied

    Liquefied natural gas (LNG) is produced using a Linde liquefaction process from pure methane gas at 3 bar and 280 K (conditions at point 1 in figure below). A three-stage compressor with interceding is used to compress the methane to 100 bar (point 2). The first stage

  • Q : Question based on strength of solution

    Help me to go through this problem. On dissolving 1 mole of each of the following acids in 1 litre water, the acid which does not give a solution of strength 1N is: (a) HCl (b) Perchloric acid (c) HNO3 (d) Phosphoric acid

  • Q : Q what is the basicity of primary

    what is the basicity of primary secondary and tertiary amines in chlorobenzene

  • Q : Problem on MM equation How to obtain

    How to obtain relation between Vm and Km,given k(sec^-1) = Vmax/mg of enzyme x molecular weight x 1min/60 sec S* = 4.576(log K -10.753-logT+Ea/4.576T).

  • Q : Calculating value of molar solution

    Choose the right answer from following. An X molal solution of a compound in benzene has mole fraction of solute equal to 0.2. The value of X is: (a)14 (b) 3.2 (c) 4 (d) 2

  • Q : Basic concepts Determination of correct

    Determination of correct mol. Mass from Roult's law is applicable to :

  • Q : What do you mean by the term alum What

    What do you mean by the term alum? Also illustrate its uses?

  • Q : Net charge of a non-ionized atom

    Describe the net charge of a non-ionized atom?

  • Q : What are ion selective electrodes? Ion

    Ion Selective Electrodes An ion selective membrane can be used to form an electrochemical cell whose emf depends on the concentration of that ion. Before we proceed to an important application of emf measurements, brie