--%>

Define thermal energy, How to calculate thermal energy?

The thermal part of the internal energy and the enthalpy of an ideal gas can be given a molecular level explanation.


All the earlier development of internal energy and enthalpy has been "thermodynamic". We have made no use of the molecular level understanding of energy that we obtained in the energy crisis. There you recall, we found that we could calculate the thermal energy contribution U- U0 for molecularity sample systems such as ideal gases. Now this thermal energy will be released to the thermodynamic internal energy and enthalpy.

The energy of a system when only the lowest available energy levels are occupied is derived on the concept of energy level. This is the energy that the system would have if the temperature were occupied. This is the energy were lowered to absolute zero and the system did not change its physical form. The thermal energy U- U0 is the additional process energy that the system would acquire if the temperature were raised from this hypothesis zero temperature form and the particles distributed thermodynamical energy themselves throughout the energy levels.

Thermal enthalpy H - H0: the general relation between enthalpy and internal energy is H - H0

For some liquids and solids at all ordinary pressures, the change in the PV term is small compared to changes in the H and U terms. As a result, at any temperature the enthalpy and internal energy are effectively equal. Thus H = u, H0 = U0, and H - H0 = U - U0. For standard state thermal enthalpies and internal energies we have 

H0T - H00 + U0T  - U00  [liquid or solid]

For gases, ideal behavior allows the PV term for a sample containing 1 mol of gas molecules to be equated to RT. When only the lowest energy states are compared, as occurs at the thermal energy results we can be converted to enthalpies by addition of RT. For standard state thermal enthalpies and internal energies we have various values for the thermal enthalpy at T = 298 K and for several other temperatures for some elements and compounds are included in this phenomenon.

Instance: nitrogen oxide, NO, forms from oxygen and nitrogen in internal combustion engines. (This reaction proceeds to a sufficient extent at the high temperatures of the engine for NO to be prodcue4d in amounts that cause serious pollution problems. Part of understanding the formation and decomposition of NO is based on the enthalpy change for the reaction at high temperatures, where NO is formed and at lower temperatures where it breaks up to N2 andO2.)

Calculate ΔH°0 and ΔH°2000 for the reaction in which NO is formed from its elements.

Answer: we begin by obtaining ΔH°0 as:

1070_molecular thermal energy.png             

Now at any temperature, such as 2000K, which is representative of high temperatures at which calorimetric methods are not applicable, we have for N2, for example, 2000 - H°0 = (H°2000 - H°298) + (H°298 - H°0) = 56.14 - (- 8.67) = 64.81 kJ. Then:

29_molecular thermal energy1.png                     

These values give:

ΔH°2000 = ΔH°0 + Δ(H°2000 - H°0)

= 179.50 + 1.41

=180.91 kJ


Notice that ΔH for the reaction can be deduced for any temperature at which the thermal energies of the reactants and the products can be calculated.

   Related Questions in Chemistry

  • Q : What do you mean by the term enzymes

    What do you mean by the term enzymes? Briefly illustrate it.

  • Q : What is solvent dielectric effect?

    Ionic dissociation depends on the dielectric constant of the solvent.The Arrhenius that ions are in aqueous solutions in equilibrium with parent molecular species allows many of the properties of ionic solutions to be understood. But difficulties began to

  • Q : Simulate the column in HYSYS The

    The objective of this work is to separate a binary mixture and to cool down the bottom product for storage. (Check table below to see which mixture you are asked to study). 100 kmol of feed containing 10 mol percent of the lighter component enters a continuous distillation column at the m

  • Q : Dipole moment of chloro-octane Describe

    Describe the dipole moment of chloro-octane in brief?

  • Q : Explain Rotational Vibrational Spectra

    The infrared spectrum of gas samples shows the effect of rotational-energy changes along with the vibrational energy change.As we know from the interpretations given to thermodynamic properties of gases, gas molecules are simultaneously rotating and vibrating. It follows that an absor

  • Q : Problem on physical and thermodynamic

    The shells of marine organisms contain calcium carbonate CaCO3, largely in a crystalline form known as calcite. There is a second crystalline form of calcium carbonate known as aragonite. Physical and thermodynamic properties of calcite and aragonite at 298

  • Q : Benzoic acid is weaker than paranitro

    Briefly state that Benzoic acid is weaker than paranitro benzoic acid?

  • Q : Which solution will have highest

    Which solution will have highest boiling point:(a) 1% solution of glucose in water  (b) 1% solution of sodium chloride in water  (c) 1% solution of zinc sulphate in water  (d) 1% solution of urea in waterAnswer: (b) Na

  • Q : Distribution law Help me to go through

    Help me to go through this problem. The distribution law is applied for the distribution of basic acid between : (a) Water and ethyl alcohol (b) Water and amyl alcohol (c) Water and sulphuric acid (d) Water and liquor ammonia

  • Q : Molar concentration of Iron chloride

    Provide solution of this question. A certain aqueous solution of FeCl3 (formula mass =162) has a density of 1.1g/ml and contains 20.0% Fecl. Molar concentration of this solution is: (a) .028 (b) 0.163 (c) 1.27 (d) 1.47