--%>

How to calculate solutions molar conductance?

The contribution of an electrolyte, or an ion electrolyte, is reported as the molar of a conductance.


The definition of the molar conductance is based on the following conductivity cell in which the electrodes are 1 m apart and of sufficient area that the cell holds the amount of solution that contains 1 mol of solute. The conductivity of such a cell is the mole conductance.

A of solution of concentration c, expressed in moles per litre, has a volume in litres per mole of 1/c or a volume in cubic meters of (10-3 m3 l-1)/c. a cell with this volume and electrodes separated by 1 m would be equilivalent to (10-3 m3 l-1)/c unit cells placed alongside each other. The conductivity of such a cell, which is the molar conductance, is given by:

A = 10-3 m3 l-1/c × k

This relation defines the molar conductance in terms of the specific conductance. The concept of the cell holding solution of volume (10-3 m3 l-1)/c is introduced only to suggest the definition of conductance and in practice one uses any convenient conductance cell, measures R, and calculate L = 1/R. with this datum one obtains k= (cell constant) L and finally A.

Many precise measurements of molar conductance were made by Friedrich Kohlausch and his coworkers between about 1860 and 1880. 

On the basis of such data and in the absence of any satisfactory theory about the nature of conduction in these solutions, some variable empirical relations were concluded. It was recognized that for some electrolytes plotting the molar conductance of an electrolyte at a fixed temperature against the square root of the concentration led to the plots which confirmed very closely at the lower concentrations to straight lines. Such plots for new electrolytes are lead to essentially linear plots are now classed as strong electrolytes, and those which seem to approach the dilute solution limit almost tangentially are classed as weak electrolytes.

An important relation can be deduced from extrapolations of the strong electrolyte data to infinite dilution to give what are known as limiting molar of the independent migration of ions. The law is more easily stated and understandable if some later ideas are anticipated and the conductance of an electrolyte at infinite dilution is treated as being made of contributions from the individual ions of the electrolyte. Let v+ be the number of positive ions and v - the number of negative ions implied by the formula of the electrolyte. 

Molar conductances ? in Ω-1 m2 mol-1 in aqueous solution at 25° C (values for c = 0obtained by extrapolation or, for HAc and NH4OH, by a combination of extrapolated values):

c NaCl KCl HCl NaAc CuSO4 H2SO4 HAc NH4OH
0.000 (0.012645) 0.014986 0.042616 0.00910 0.02661 0.08592 0.03907 0.002714
0.0005 (0.012450) 0.014781 0.042274 0.00892 0.02304 0.08262 0.00677 0.0047
0.001 0.012374 0.014695 0.042136 0.00885 0.01666 0.07990 0.00492 0.0034
0.010 0.011851 0.014127 0.041200 0.008376 0.01010 0.06728 0.00163 0.00113
0.100 0.010674 0.012896 0.039132 0.007280 0.00586 0.05016   0.00036
1.00   0.01119 0.03328 0.00491        

   Related Questions in Chemistry

  • Q : Problem on equilibrium constant Ethanol

    Ethanol is manufactured from carbon monoxide and hydrogen at 600 K and 20 bars according to the reaction2 C0(g) + 4 H2(g) ↔ C2H5OH(g) + H2O (g)The feed stream contains 60 mol% H2, 20 m

  • Q : Solutions The relative lowering of

    The relative lowering of vapour pressure of 0.2 molal solution in which solvent is benzene

  • Q : Question based on lowest vapour pressure

    Give me answer of this question. Among the following substances the lowest vapour pressure is exerted by: (a) Water (b) Mercury (c) Kerosene (d) Rectified spirit

  • Q : Calculate molarity of a solution

    Provide solution of this question. Molarity of a solution prepared by dissolving 75.5 g of pure KOH in 540 ml solution is: (a) 3.05 M (b) 1.35 M (c) 2.50 M (d) 4.50 M

  • Q : Question based on vapour pressure and

    Benzene and toluene form nearly ideal solutions. At 20°C, the vapour pressure of benzene is 75 torr and that of toluene is 22 torr. The parial vapour pressure of benzene at 20°C for a solution containing 78g of benzene and 46g of toluene in torr is: (a) 50 (b)

  • Q : Mole fraction of benzene Choose the

    Choose the right answer from following. In a solution of 8.7g benzene C6H6 and 46.0 gm toluene ,(C6, H5, CH3) the mole fraction of benzene in this solution is: (a)1/6 (b)1/5 (c)1/2 (d)1/3

  • Q : Vant Hoff factor The Van't Hoff factor

    The Van't Hoff factor of the compound K3Fe(CN)6 is: (a) 1  (b) 2  (c) 3  (d) 4  Answer: (d) K3[Fe(CN)6] → 3K+

  • Q : Q what is the basicity of primary

    what is the basicity of primary secondary and tertiary amines in chlorobenzene

  • Q : Linde liquefaction process Liquefied

    Liquefied natural gas (LNG) is produced using a Linde liquefaction process from pure methane gas at 3 bar and 280 K (conditions at point 1 in figure below). A three-stage compressor with interceding is used to compress the methane to 100 bar (point 2). The first stage

  • Q : Chem Silicon has three naturally

    Silicon has three naturally occurring isotopes. 28Si, mass = 27.976927; 29Si, mass = 28.976495; 30Si, mass = 29.973770 and 3.10% abundance. What is the abundance of 28Si?