--%>

How molecule-molecule collisions takes place?

An extension of the kinetic molecular theory of gases recognizes that molecules have an appreciable size and deals with molecule-molecule collisions.


We begin studies of elementary reactions by investigating the collisions between the molecules of a gas. We are led to expression for the average distance that a molecule of a gas travels between collisions with other molecules and to two quantities that express the number of molecule-molecule collisions which occur in a unit time travel.

Consider a particular molecule A with diameter d, moving in the direction indicated. If the speed of molecule A is v, m remain stationary, molecule A will collide in 1 s with all the molecules that have remain centered within the cylinder. The volume of the cylinder whose radius is equal to the molecular diameter d is ∏d2-vN*, is the diameter of molecules per unit volume. The mean free path, i.e. the distance traveled between collisions, is the free path length.

L = -v/∏d2-vN* = 1/∏d2N*

A more detailed calculation shows that this result is not exactly correct. The assumption that only molecule A moves implies a relative speed of the colliding molecules of v. in fact if the molecules are all moving with speed v-, all types of collisions will occur, ranging from glancing collisions, where the relative angles to each other and the relative speed is √2v-. a correct result can be obtained in place of these recognitions that although molecule A moves a distance v- in 1 s, it collides with other molecules with a relative speed of √2v-. The mean path is then written as:

L = 1/ √2∏d2N*

How far a molecule travels between collisions has now been shown to depend on the number of molecules per unit volume and so on, the molecular diameter d.

The second matter to be investigated is the number of collisions per second that a molecule makes. This collision frequency is denoted by Z1. In relation to the other molecules, the molecule A travels with an effective speed equals to the number of molecules in a cylinder of radius d and of length √2v. We therefore have:

Z1 = 9√2u-) (∏d2)N* = √2∏d2vN*

The last matter to be investigated is the number of collisions occurring in a unit volume per unit time. As can be imagined, this quantity is of considerable importance in understanding the rates of chemical reactions. The number of collisions per second per unit volume is called the collision rate, denoted Z11.

The collision rate Z11 is closely related to the collision frequency Zt. Since there are N*molecules per unit volume and each of these molecules collided and not contacted twice. We therefore obtain 

Z11 = ½ √2∏d2v- (N*)2 = 1/√2 ∏d2v- (N*)

The mean free path, the collision frequency, and the collision have now been expressed in equations that involves the molecular diameter d. since the molecular speeds and the number of molecules per cubic meter of a particular gas can be determined, only molecular diameters need be known in order to evaluate l, Z1 and Z11. Many methods are available for determining the size of molecules.

Instance: use the collision diameter value of d = 374 pm to calculate the collision properties L, Z1 and Z11 for N2 at 1 bar and 25 degree C.

Answer: the number of molecules in 1 m3 is:

N* = 6.022 Χ 1023/ 0.0248 m3 = 2.43 Χ 1025 m-3

The mass of mole of N2 molecules is:

M = 0.02802 kg

The average molecular speed form v- = [8kT/(∏m)]½ = [8RT/∏M]½ here we have;

v- = [8(8.314 JK-1 mol-1) (298 K)/ ∏ (0.02802 kg mol-1)] = 475 ms-1

   Related Questions in Chemistry

  • Q : Organic structure of cetearyl alcohol

    Can we demonstration the organic structure of cetearyl alcohol and state me what organic family it is?

  • Q : Modes of concentration Which of the

    Which of the given modes of expressing concentration is fully independent of temperature: (1) Molarity (2) Molality (3) Formality (4) Normality Choose the right answer from above.

  • Q : Decinormal concentration of Sulfuric

    Give me answer of this question. The volume of water to be added to 100cm3 of 0.5 N N H2SO4 to get decinormal concentration is : (a) 400 cm3 (b) 500cm3 (c) 450cm3 (d)100cm3

  • Q : Macromolecules what are condensation

    what are condensation polymerization give in with 2 examples

  • Q : Raoults law Give me answer of this

    Give me answer of this question. Provide solution of this question. Which one of the following is the expression of Raoult's law: (a) P-P1/P = n/n+N (b) P1-P/P = N/ N+n (c)P-P2/P1= N/ N-n (d) P1-P/P2= N-n/N

  • Q : Donnan Membrane Equilibria The electric

    The electric charge acquired by macromolecules affects the equilibrium set up across a semipermeable membrane.Laboratory studies of macromolecule solutions as in osmotic pressure and dialysis studies confine the macromolecules to one compartment while allo

  • Q : Cons of eating organic foods Illustrate

    Illustrate the cons of eating organic foods?

  • Q : Mass percent Help me to go through this

    Help me to go through this problem. 10 grams of a solute is dissolved in 90 grams of a solvent. Its mass percent in solution is : (a) 0.01 (b) 11.1 (c)10 (d) 9

  • Q : Infrared Adsorption The adsorption of

    The adsorption of infrared radiation by diatomic molecules increases the vibrational energy fo molecules and gives information about the force constant for the "spring" of the molecule.;The molecular motion that has the next larger energy level spacing aft

  • Q : Coordination number of a cation The

    The coordination number of a cation engaging a tetrahedral hole is: (a) 6  (b) 8  (c) 12  (d) 4 Answer: (d) The co-ordination number of a cation occupying a tetrahedral hole is 4.