--%>

How can enzymes act as catalyst?

Enzymes are complex proteinous substances, produced by living bodies, such as act as catalysis in the physiological reactions. The enzymes are, also called biochemical catalysts and the phenomenon is known as bio-chemical catalysis because numerous reactions that occur the bodies of animals and plants to maintain the life process are catalyzed by enzymes. Though enzymes are produced by living beings, they themselves are non-living and can act as catalysts even outside the living bodies. Enzymes are proteins with high molar mass ranging from 15000 to 1,000,000 g mol-1. Enzymes possess very high catalytic activity. They can increase rates of the reaction by 108 to 1020 times. The enzymes are extremely specific in nature. There is always a lock and key relationship between substrate (reactants) and enzymes. Due to this relationship between the substrate molecules can get attached to the enzyme molecule and then the reaction takes place. Enzymes are capable of bringing about complex reaction at body temperature.

Mechanism of enzyme activity

The stepwise mechanism of enzyme catalyzed reaction as proposed by Michaeli and Menten (1913) is being described as follows.

The reactant molecule attaches itself to the active site on the surface of enzyme. The active site in the given enzyme is so shaped that only a specific substrate can fit in it, just as a lock can be opened only with a specific key. The specific binding results in the creation of enzyme-substrate complex which is also referred to as activated complex.

In the complex, the substrate is located in the proper orientation to assist the chemical reaction and enhancing its rate. The complex finally decomposes to give products and regenerated enzymes. The general reaction system can be presented as:

Step I: binding of substrate (S) to enzyme

1205_enzyme catalysis.png 

Step II: product formation of the complex

[ES]  651_enzyme catalysis3.png  [EP]

Step III: release of the product from the enzyme

1981_enzyme catalysis1.png 

Characteristics of enzyme catalysis

The important characteristics of enzymes catalysts are:
    
High efficiency: enzyme catalysis increases the speed of reactions by 108 to 1020 times as compared to the uncatalysed reactions.
    
Extremely small quantities: extremely small quantities of enzyme catalysts - as small as millionth of a mole - can increase the rate of reaction by factors of 103 to 106.
    
Specificity: the enzyme catalysts are very much specific in nature. This means that one enzyme cannot catalyse more than one process. Almost every biochemical reaction is controlled by its own specific enzymes. For instance, the enzyme urease catalyses the hydrolysis of urea only and  does not catalyse hydrolysis of any other amide. At the same time, none of the several thousand other enzymes present in the cell can catalyse hydrolysis of urea.

473_enzyme catalysis2.png 

In the same manner, Maltase catalyses the hydrolysis of maltose and no other enzyme can catalyse its hydrolysis.
    
Optimum temperature and pH: the temperature at which enzyme activity is maximum is referred to as optimum temperature. The optimum temperature for enzyme activity is 37°C (310 K). The enzyme activity decreases on either side of optimum temperature. Similarly enzymes catalyzed reaction have maximum rate at pH around 7. Which is also called optimum pH value.
    
Enhancement of enzyme activity: Catalytic activity of enzymes is greatly enhanced by the presence of activators or co-enzymes. Activators are metal ions (Na+, Mn2+, CO2+, Cu2- etc) which get weakly bonded to enzyme molecules and therefore, promote their catalytic action. For example, the enzyme amylase shows high catalytic activity in the presence of NaCl which provides Na+ ions. Coenzymes are non-protein organic compounds which are required by certain enzymes for their catalytic activity.

   Related Questions in Chemistry

  • Q : Composition of the vapour Choose the

    Choose the right answer from following. An ideal solution was obtained by mixing methanol and ethanol. If the partial vapour pressure of methanol and ethanol are 2.619KPa and 4.556KPa respectively, the composition of the vapour (in terms of mole fraction) will be: (

  • Q : Theory of three dimensional motion

    Partition function; that the translational energy of 1 mol of molecules is 3/2 RT will come as no surprise. But the calculation of this result further illustrates the use of quantized states and the partition function to obtain macroscopic properties. The partition fu

  • Q : Determining Mole fraction of water Can

    Can someone please help me in getting through this problem. The mole fraction of water in 20% aqueous solution of H2O2 is: (a) 77/68 (b) 68/77 (c) 20/80  (d) 80/20

  • Q : Problem on preparing of a solution Give

    Give me answer of this question. How many grams of CH3OH should be added to water to prepare 150 solution of@M CH3 OH: (a) 9.6 (b) 2.4 (c) 9.6x 103 (d) 2.4 x103

  • Q : Isotonic Solutions Which one of the

    Which one of the following pairs of solutions can we expect to be isotonic at the same temperature:(i) 0.1M Urea and 0.1M Nacl  (ii) 0.1M Urea and 0.2M Mgcl2  (iii) 0.1M Nacl and 0.1M Na2SO4  (iv) 0.1M Ca(NO3<

  • Q : Excel assignment I want it before 8 am

    I want it before 8 am tomorow please. I am just wondering how much is going to be ?

  • Q : Vitamines 7 enzyme cofactor what is the

    what is the relationship between vitamins and enzyme cofactors

  • Q : Explain Second Order Rate Equations.

    Integration of the second order rate equations also produces convenient expressions for dealing with concentration time results.A reaction is classified as second order if the rate of the reaction is proportional to the square of the concentration of one o

  • Q : BASIC CHARACTER OF AMINES IN GAS PHASE,

    IN GAS PHASE, BASICITIES OF THE AMINES IS JUST OPPOSITE TO BASICITY OF AMINES IN AQEUOUS PHASE .. EXPLAIN

  • Q : What are various structure based

    This classification of polymers is based upon how the monomeric units are linked together. Based on their structure, the polymers are classified as: 1. Linear polymers: these are the polymers in which monomeric units are linked together to form long straight c