--%>

How can enzymes act as catalyst?

Enzymes are complex proteinous substances, produced by living bodies, such as act as catalysis in the physiological reactions. The enzymes are, also called biochemical catalysts and the phenomenon is known as bio-chemical catalysis because numerous reactions that occur the bodies of animals and plants to maintain the life process are catalyzed by enzymes. Though enzymes are produced by living beings, they themselves are non-living and can act as catalysts even outside the living bodies. Enzymes are proteins with high molar mass ranging from 15000 to 1,000,000 g mol-1. Enzymes possess very high catalytic activity. They can increase rates of the reaction by 108 to 1020 times. The enzymes are extremely specific in nature. There is always a lock and key relationship between substrate (reactants) and enzymes. Due to this relationship between the substrate molecules can get attached to the enzyme molecule and then the reaction takes place. Enzymes are capable of bringing about complex reaction at body temperature.

Mechanism of enzyme activity

The stepwise mechanism of enzyme catalyzed reaction as proposed by Michaeli and Menten (1913) is being described as follows.

The reactant molecule attaches itself to the active site on the surface of enzyme. The active site in the given enzyme is so shaped that only a specific substrate can fit in it, just as a lock can be opened only with a specific key. The specific binding results in the creation of enzyme-substrate complex which is also referred to as activated complex.

In the complex, the substrate is located in the proper orientation to assist the chemical reaction and enhancing its rate. The complex finally decomposes to give products and regenerated enzymes. The general reaction system can be presented as:

Step I: binding of substrate (S) to enzyme

1205_enzyme catalysis.png 

Step II: product formation of the complex

[ES]  651_enzyme catalysis3.png  [EP]

Step III: release of the product from the enzyme

1981_enzyme catalysis1.png 

Characteristics of enzyme catalysis

The important characteristics of enzymes catalysts are:
    
High efficiency: enzyme catalysis increases the speed of reactions by 108 to 1020 times as compared to the uncatalysed reactions.
    
Extremely small quantities: extremely small quantities of enzyme catalysts - as small as millionth of a mole - can increase the rate of reaction by factors of 103 to 106.
    
Specificity: the enzyme catalysts are very much specific in nature. This means that one enzyme cannot catalyse more than one process. Almost every biochemical reaction is controlled by its own specific enzymes. For instance, the enzyme urease catalyses the hydrolysis of urea only and  does not catalyse hydrolysis of any other amide. At the same time, none of the several thousand other enzymes present in the cell can catalyse hydrolysis of urea.

473_enzyme catalysis2.png 

In the same manner, Maltase catalyses the hydrolysis of maltose and no other enzyme can catalyse its hydrolysis.
    
Optimum temperature and pH: the temperature at which enzyme activity is maximum is referred to as optimum temperature. The optimum temperature for enzyme activity is 37°C (310 K). The enzyme activity decreases on either side of optimum temperature. Similarly enzymes catalyzed reaction have maximum rate at pH around 7. Which is also called optimum pH value.
    
Enhancement of enzyme activity: Catalytic activity of enzymes is greatly enhanced by the presence of activators or co-enzymes. Activators are metal ions (Na+, Mn2+, CO2+, Cu2- etc) which get weakly bonded to enzyme molecules and therefore, promote their catalytic action. For example, the enzyme amylase shows high catalytic activity in the presence of NaCl which provides Na+ ions. Coenzymes are non-protein organic compounds which are required by certain enzymes for their catalytic activity.

   Related Questions in Chemistry

  • Q : Cations Explain how dissolving the

    Explain how dissolving the Group IV carbonate precipitate with 6M CH3COOH, followed by the addition of extra acetic acid.

  • Q : Problem related to molarity Provide

    Provide solution of this question. Increasing the temperature of an aqueous solution will cause: (a) Decrease in molality (b) Decrease in molarity (c) Decrease in mole fraction (d) Decrease in % w/w

  • Q : Concentration of urea Help me to go

    Help me to go through this problem. 6.02x 1020 molecules of urea are present in 100 ml of its solution. The concentration of urea solution is: (a) 0.02 M (b) 0.01 M (c) 0.001 M (d) 0.1 M (Avogadro constant, N4= 6.02x 1023mol -1)<

  • Q : Quantum Mechanical Operators The

    The quantum mechanical methods, illustrated previously by the Schrödinger equation, are extended by the use of operators. Or, w

  • Q : Problem on Clausius equation of state

    If a gas can be described by the Clausius equation of state: P (V-b) = RT Where b is a constant, then:  (a) Obtain an expression for the residual vo

  • Q : Pressure Phase Diagrams The occurrence

    The occurrence of different phases of a one component system can be shown on a pressure temperature. The phases present in a one line system at various temperatures can be conveniently presented on a P- versus-T diagram. An example is pro

  • Q : Molarity of HCl solution 20 ml of HCL

    20 ml of HCL solution needs 19.85 ml of 0.01M NaOH solution for complete neutralization. Morality of the HCL solution is:  (i) 0.0099 (ii) 0.099 (iii) 0.99 (iv) 9.9 Choose the right answer from above.

  • Q : Value of molar solution Select the

    Select the right answer of the question. Molar solution contains: (a)1000g of solute (b)1000g of solvent (c)1 litre of solvent (d)1 litre of solution

  • Q : What is protein in Chemistry Illustrate

    Illustrate what is protein in Chemistry?

  • Q : Product of HCl Zn Illustrate  the

    Illustrate  the product of HCl Zn?