--%>

Get Solved LP Problems

Solve Linear Programming Questions

A producer manufactures 3 models (I, II and III) of a particular product. He uses 2 raw materials A and B of which 4000 and 6000 units respectively are obtainable. The raw materials per unit of 3 models are listed below.

Raw materials

I

II

III

A

2

3

5

B

4

2

7

The labour time for each unit of model I is two times that of model II and thrice that of model III. The whole labour force of factory can manufacture an equivalent of 2500 units of model I. A model survey specifies that the minimum demand of 3 models is 500, 500 and 375 units correspondingly. However the ratio of number of units manufactured must be equal to 3:2:5. Suppose that gains per unit of model are 60, 40 and 100 correspondingly. Develop a LPP.

 

Answer

Assume

x1 - number of units of model I

     x2 - number of units of model II

     x3 - number of units of model III

 

 

 Raw materials

I

II

III

Availability

A

2

3

5

4000

B

4

2

7

6000

Profit

60

40

100

 

 

x1 + 1/2x2 + 1/3x3 ≤ 2500                                                       Labour time

 

x1 ≥ 500, x2 ≥ 500, x3 ≥ 375                                                    Minimum demand

 

The given ratio is x1: x2: x3 = 3: 2: 5

x1 / 3 = x2 / 2 = x3 / 5 = k

x1 = 3k; x2 = 2k; x3 = 5k

x2 = 2k → k = x2 / 2

So x1 = 3 x2 / 2 → 2x1 = 3x2

Likewise 2x3 = 5x2

 

Maximize Z= 60x1 + 40x2 + 100x3

Subject to 2x1 + 3x2 + 5x3 ≤ 4000

                  4x1 + 2x2 + 7x3 ≤ 6000

x1 + 1/2x2 + 1/3x3 ≤ 2500

2 x1 = 3x2

2 x3 = 5x2

& x1 ≥ 500, x2 ≥ 500, x3 ≥ 375

 

   Related Questions in Basic Statistics

  • Q : Hypothesis homework A sample of 9 days

    A sample of 9 days over the past six months showed that a clinic treated the following numbers of patients: 24, 26, 21, 17, 16, 23, 27, 18, and 25. If the number of patients seen per day is normally distributed, would an analysis of these sample data provide evidence that the variance in the numbe

  • Q : State the hypotheses At Western

    At Western University the historical mean of scholarship examination score for freshman applications is 900. Population standard deviation is assumed to be known as 180. Each year, the assistant dean uses a sample of applications to determine whether the mean ex

  • Q : Problem on queuing diagram Draw a 

    Draw a queuing diagram for the systems below and describe them using Kendall’s notation: A) Single CPU system <

  • Q : What is your conclusion The following

    The following data were collected on the number of emergency ambulance calls for an urban county and a rural county in Florida. Is County type independent of the day of the week in receiving the emergency ambulance calls? Use α = 0.005. What is your conclusion? Day of the Week<

  • Q : Data Description 1. If the mean number

    1. If the mean number of hours of television watched by teenagers per week is 12 with a standard deviation of 2 hours, what proportion of teenagers watch 16 to 18 hours of TV a week? (Assume a normal distribution.) A. 2.1% B. 4.5% C. 0.3% D. 4.2% 2. The probability of an offender having a s

  • Q : Regression Analysis 1. A planning

    1. A planning official in the Texas Department of Community Affairs, which works in the office next to you, has a problem. He has been handed a data set from his boss that includes the costs involved in developing local land use plans for communities wi

  • Q : Sample Questions in Graphical Solution

    Solved problems in Graphical Solution Procedure, sample assignments and homework Questions: Minimize Z = 10x1 + 4x2 Subject to

  • Q : Data Description 1. If the mean number

    1. If the mean number of hours of television watched by teenagers per week is 12 with a standard deviation of 2 hours, what proportion of teenagers watch 16 to 18 hours of TV a week? (Assume a normal distribution.) A. 2.1% B. 4.5% C. 0.3% D. 4.2% 2. The probability of an offender having a s

  • Q : Point of estimate standing data se to

    standing data se to develop a point of estimate

  • Q : Explain Service times Service times: A)

    Service times:A) In most cases, servicing a request takes a “short” time, but in a few occasions requests take much longer.B) The probability of completing a service request by time t, is independent of how much tim