--%>

Film Mass Transport

Sulfur trioxide (SO3) is manufactured by the gas-phase oxidation of SO2 over a platinum catalyst:

SO2 + ½ O2 à SO3

The catalyst is a non-porous extrudate with the platinum deposited on the outside surface.  following data have been measured for the particle rate of reaction as a function of SO2 concentration in the bulk gas at 450 °C

Mass Velocity (G)

Lb/hr-ft2

SO2 Partial Pressure in Bulk

Atm

rP

gmol/h-gcat

514

0.0601

0.1346

350

0.0599

0.1278

245

0.0603

0.1215

147

0.0603

0.0956

 

The following data apply to this problem

εB (void fraction) =0.43

Catalyst = 1/8 x 1/8 inch (diameter x length) extrudates (Pt on surface only)

At (specific external surface area of catalyst) = 5.12 ft2/lb

DSO2/air = 1.1 ft2/h

μair = 0.09 lb/hr-ft

ρair = 0.0304 lb/ft3

 

Without calculating anything, what can you tell about the importance of film mass transport on this reaction? Explain briefly.

 

2.        Explain why mass transfer resistance reduces the global rate more at higher temperature than at lower temperature.  Assume no heat transfer resistances are present.

 

3.       A gas-phase catalytic reaction is taking place in a Packed Bed Reactor (PBR).  The system is isothermal but film mass transfer resistances are important.

a.       Would increasing the turbulence in the gas phase increase or decrease the global rate?

b.      If the system is not isothermal and the reaction is exothermic would increasing the turbulence increase or decrease the global rate?

 

4.       Experimental global rate data for the oxidation of SO2 over a non-porous platinum catalyst are given in the table below for two levels of conversion of SO2.  Estimate the importance of film mass transport from these data by calculating the concentration difference (for SO2) between the bulk gas and the catalyst surface.

DATA

a)      packed-bed reactor (PBR); catalyst consists of 1/8 x 1/8-inch (radius x length) tablets

b)      packing void fraction (εB) = 0.36

c)       superficial mass velocity (G) = 147 lb/hr-ft2

d)      Pressure = 790 mm Hg; Temperature (assume isothermal) = 480 °C

e)      Bulk gas concentration: 6.42 mol% SO2 and 93.58 mol% air

f)       Specific external surface area of catalyst (am) = 5.12 ft2/lb

 

 

Partial pressure (atm)

Fractional Conversion of SO2

rp

(lbmol/hr-ft2)

SO2

SO3

O2

0.1

0.0187

0.0603

0.0067

0.201

0.6

0.0037

0.0273

0.0409

0.187

 

rp = particle rate of reaction (rate per unit external surface area of catalyst)

5.  Cumene (C) is catalytically cracked to manufacture benzene (B) and propylene (P).  The following non-stoichiometric equation illustrates the chemistry:

                                                                C  à  B + P

Typical operating conditions for this reaction are a temperature and total pressure of 362 °C and 1.0 atm. respectively.  A measurement of the global rate of reaction was made in the laboratory, resulting in the following value for the rate of disappearance of cumene:

                                rp = 76.5 kmol/m2 - h

 

From the data supplied, is there any evidence of either heat and mass transfer limitations for this reaction?  Be as quantitative as possible in your explanation.

Assumptions

The catalyst particle is non-porous. All thermophysical properties (density, viscosity, thermal conductivity, etc.) of the bulk gas and gas in the film can be assumed to be constant.

Data

Average MW of gas = 34.37 kg/kmol

Gas density = 0.66 kg/m3

Gas viscosity = 0.094 kg/m - h

Gas thermal conductivity = 0.037 kcal/m - h - °C

Gas heat capacity = 33.0 kcal/kg - °C

G (mass velocity) = 56,470 kg/m2 - h

at = am = 45 m2/kg cat (specific external surface area of catalyst)

εB (bed void fraction) = 0.5

dp (catalyst particle diameter, equivalent sphere) = 0.1 cm

ΔHr (heat of reaction) = +41,816 kcal/kmol (endothermic)

Ea (activation energy for reaction) = 40 kcal/gmol

ρB (catalyst bulk density) = 5x105 g/m3

Sc (Schmidt number) = 1.483

   Related Questions in Chemistry

  • Q : Infrared Adsorption The adsorption of

    The adsorption of infrared radiation by diatomic molecules increases the vibrational energy fo molecules and gives information about the force constant for the "spring" of the molecule.;The molecular motion that has the next larger energy level spacing aft

  • Q : From where the tin is obtained From

    From where the tin is obtained? Briefly illustrate it.

  • Q : Difference in Mendeleevs table and

    Briefly describe the difference in the Mendeleev’s table and modern periodic table?

  • Q : Explain physical properties of

    . Boiling pointsThe boiling points of monohalogen derivatives of benzene, which are all liquids, follow the orderIodo > Bromo > ChloroThe boiling points of isomeric dihalobe

  • Q : Explain the process of adsorption of

    The extent of adsorption of a gas on a solid adsorbent is affected by the following factors: 1. Nature of the gas Since physical adsorption is non-specific in nature, every gas will get adsorbed on the

  • Q : Water under pressure problem-henry law

    Can someone help me in going through this problem. The statement “When 0.003 moles of a gas are dissolved in 900 gm of water under a pressure of 1 atm, 0.006 moles will be dissolved under the pressure of 2 atm", signfies: (a)

  • Q : Strength of any solution Give me answer

    Give me answer of this question. A solution contains 1.2046 x 1024 hydrochloric acid molecules in one dm3 of the solution. The strength of the solution is: (a) 6 N (b) 2 N (c) 4 N (d) 8 N

  • Q : Describe First Order Rate Equation The

    The integrated forms of the first order rate equations are conveniently used to compare concentration time results with this rate equation. Rate equations show the dependence of the rate of the reaction on concentration can be integrated to give expressions fo

  • Q : Ionization Potential Second ionization

    Second ionization potential of Li, Be and B is in the order (a)Li>Be>B (b)Li>B>Be (c)Be>Li>B (d)B>Be>Li

  • Q : Describe the function of the

    Briefly describe the function of the monosaccharide?