--%>

Film Mass Transport

Sulfur trioxide (SO3) is manufactured by the gas-phase oxidation of SO2 over a platinum catalyst:

SO2 + ½ O2 à SO3

The catalyst is a non-porous extrudate with the platinum deposited on the outside surface.  following data have been measured for the particle rate of reaction as a function of SO2 concentration in the bulk gas at 450 °C

Mass Velocity (G)

Lb/hr-ft2

SO2 Partial Pressure in Bulk

Atm

rP

gmol/h-gcat

514

0.0601

0.1346

350

0.0599

0.1278

245

0.0603

0.1215

147

0.0603

0.0956

 

The following data apply to this problem

εB (void fraction) =0.43

Catalyst = 1/8 x 1/8 inch (diameter x length) extrudates (Pt on surface only)

At (specific external surface area of catalyst) = 5.12 ft2/lb

DSO2/air = 1.1 ft2/h

μair = 0.09 lb/hr-ft

ρair = 0.0304 lb/ft3

 

Without calculating anything, what can you tell about the importance of film mass transport on this reaction? Explain briefly.

 

2.        Explain why mass transfer resistance reduces the global rate more at higher temperature than at lower temperature.  Assume no heat transfer resistances are present.

 

3.       A gas-phase catalytic reaction is taking place in a Packed Bed Reactor (PBR).  The system is isothermal but film mass transfer resistances are important.

a.       Would increasing the turbulence in the gas phase increase or decrease the global rate?

b.      If the system is not isothermal and the reaction is exothermic would increasing the turbulence increase or decrease the global rate?

 

4.       Experimental global rate data for the oxidation of SO2 over a non-porous platinum catalyst are given in the table below for two levels of conversion of SO2.  Estimate the importance of film mass transport from these data by calculating the concentration difference (for SO2) between the bulk gas and the catalyst surface.

DATA

a)      packed-bed reactor (PBR); catalyst consists of 1/8 x 1/8-inch (radius x length) tablets

b)      packing void fraction (εB) = 0.36

c)       superficial mass velocity (G) = 147 lb/hr-ft2

d)      Pressure = 790 mm Hg; Temperature (assume isothermal) = 480 °C

e)      Bulk gas concentration: 6.42 mol% SO2 and 93.58 mol% air

f)       Specific external surface area of catalyst (am) = 5.12 ft2/lb

 

 

Partial pressure (atm)

Fractional Conversion of SO2

rp

(lbmol/hr-ft2)

SO2

SO3

O2

0.1

0.0187

0.0603

0.0067

0.201

0.6

0.0037

0.0273

0.0409

0.187

 

rp = particle rate of reaction (rate per unit external surface area of catalyst)

5.  Cumene (C) is catalytically cracked to manufacture benzene (B) and propylene (P).  The following non-stoichiometric equation illustrates the chemistry:

                                                                C  à  B + P

Typical operating conditions for this reaction are a temperature and total pressure of 362 °C and 1.0 atm. respectively.  A measurement of the global rate of reaction was made in the laboratory, resulting in the following value for the rate of disappearance of cumene:

                                rp = 76.5 kmol/m2 - h

 

From the data supplied, is there any evidence of either heat and mass transfer limitations for this reaction?  Be as quantitative as possible in your explanation.

Assumptions

The catalyst particle is non-porous. All thermophysical properties (density, viscosity, thermal conductivity, etc.) of the bulk gas and gas in the film can be assumed to be constant.

Data

Average MW of gas = 34.37 kg/kmol

Gas density = 0.66 kg/m3

Gas viscosity = 0.094 kg/m - h

Gas thermal conductivity = 0.037 kcal/m - h - °C

Gas heat capacity = 33.0 kcal/kg - °C

G (mass velocity) = 56,470 kg/m2 - h

at = am = 45 m2/kg cat (specific external surface area of catalyst)

εB (bed void fraction) = 0.5

dp (catalyst particle diameter, equivalent sphere) = 0.1 cm

ΔHr (heat of reaction) = +41,816 kcal/kmol (endothermic)

Ea (activation energy for reaction) = 40 kcal/gmol

ρB (catalyst bulk density) = 5x105 g/m3

Sc (Schmidt number) = 1.483

   Related Questions in Chemistry

  • Q : Soluation of Ideal Gas Law problems

    Explain the method, how do you solve Ideal Gas Law problems?

  • Q : Explain the preparation of phenols. The

    The methods used for the preparation of phenols are given below:    From aryl sulphonic acids

  • Q : Hydroxide is highly insoluble in

     : 1) Chromium(III) hydroxide is highly insoluble in distilled water but dissolves readily in either acidic or basic solution. Briefly explain why the compound can dissolve in acidic or in basic but not in neutral solution. Write appropriate equations to

  • Q : Molar conductance what is the molar

    what is the molar conductance of chloropentaamminecobalt(III) chloride?

  • Q : Explain the catalyst definition and

    Catalyst is a substance which accelerates the rate of a chemical reaction without undergoing any change in its chemical composition or mass during the reaction. The phenomenon of increasing the rate of a reaction with the help of a catalyst is known as catalysis.

  • Q : HCl is polar or non-polar Can you

    Can you please illustrate that HCl is polar or non-polar? Briefly illustrate it.

  • Q : Explain solid in liquid solutions. The

    The French chemist Francois Marie Raoult (1886) carried out a series of experiments to study the vapour pressure of a number of binary solutions. On the basis of the results of the experiments, he proposed a generalization called Raoult's law which states that, <

  • Q : What is Distillation Separation by

    Separation by distillation can be described with a boiling point diagram. The important process of distillation can now be investigated. From the boiling point diagram one can see that if a small amount of vapour were removed from a liquid of composit

  • Q : Explain alcohols and phenols in organic

    Alcohols and phenols are the compounds

  • Q : Kinds of insulators Describe all the

    Describe all the kinds of insulators which are present?