--%>

Explanation of oxygen family.

Group 16 of periodic table contains five elements namely, oxygen (O), sulphur (S), selenium (Se), tellurium (Te) and polonium (Po). These are collectively known as chalcogens or ore forming elements because many metal ores occur as oxides and sulphides. These elements belong to p-block. The first four members of group 16 are non-metals. Polonium has metallic character and is a radioactive element with a very short period.

Oxygen, the most abundant element, is a vital element of atmosphere and ocean. It composes 46.6% of earth's crust. It forms about 21% of air as the free element and 89% of the ocean by weight. Sulphur is less abundant and occurs about 0.052% of the earth's crust. Sulphur is also referred as Brim stone. The name sulphur is derived from Sanskrit word 'Sulveri' which means 'killer of copper'. Compared to oxygen and sulphur the other members of this group are rare.

Atoms of these elements have outer electronic configuration as ns2np4, where n varies from 2 to 6. The electronic configurations of the elements of group 16 are shown in the table below:

Elements

At. No.

Electronic configuration

Abundance in earth's crust (ppm)

Oxygen (O)

8

[He] 2s2 2p4

4.66 × 105

Sulphur (S)

16

[Ne] 3s2 3p4

5.20 × 102

Selenium (Se)

34

[Ar] 3d10 4s2 4p4

9.0 × 10-2

Tellurium (Te)

52

[Kr] 4d10 5s2 5p4

2 × 10-3

Polonium (Po)

84

[Xe] 4f14 5d10 6s2 6p4

-


The four p-electrons of the outermost shell are arranged as px2 py1 pz1. Thus, there are two half-filled p-orbitals which are used for bonding with other elements. From the similar outer electronic configuration of these elements, it is expected that they will show similar physical and chemical properties.

Oxygen the first member of this group has very high ionization energy (1314 kJ mol-1and differs markedly from other members of the family.

Oxygen, on the other hand, is found to exhibit remarkable resemblance with its neighbours, nitrogen and fluorine. For example, it forms strong pπ-pπ bond like nitrogen. Also it forms hydrogen bonds like nitrogen and fluorine.

   Related Questions in Chemistry

  • Q : Illustrate the Lewis Dot Structure

    Illustrate the Lewis Dot Structure for the CH4O.

  • Q : Thermodynamics 1 Lab Report I already

    I already did Materials and Methods section. I uploaded it with the instructions. Also, make sure to see Concept Questions and Thinking Ahead in the instructions that I uploaded. deadline is tomorow at 8 am here is the link to download all instructions because I couldn't attach all of t

  • Q : Problem on mol fraction of naphthalene

    At 20°C the solubility of solid naphthalene in hexane is 0.09 mol/mol of solution. Use this information and the data below to estimate the following for this system: a) The mol fraction of naphthalene in the vapour phase in equ

  • Q : Effect on vapour pressure of dissolving

    Give me answer of this question. When a substance is dissolved in a solvent the vapour pressure of the solvent is decreased. This results in: (a) An increase in the b.p. of the solution (b) A decrease in the b.p. of the solvent (c) The solution having a higher fr

  • Q : Formula of diesel Write a short note on

    Write a short note on the formula of diesel, petrol and also CNG?

  • Q : Determining highest normality What is

    What is the correct answer. Which of the given solutions contains highest normality: (i) 8 gm of KOH/litre (ii) N phosphoric acid (iii) 6 gm of NaOH /100 ml (iv) 0.5M H2SO4

  • Q : Relationship between free energy and

    The free energy of a gas depends on the pressure that confines the gas. The standard free energies of formation, like those allow predictions to be made of the possibility of a reaction at 25°C for each reagent at 

  • Q : Organic and inorganic substances living

    living beings are made up of organic and inorganic substances.according to their complexity of their molecules how can ach of these substances be classified?

  • Q : Molarity in Nacl The molarity of 0.006

    The molarity of 0.006 mole of NaCl in 100 solutions will be: (i) 0.6 (ii) 0.06 (iii) 0.006 (iv) 0.066 (v) None of theseChoose the right answer from above.Answer: The right answer is (ii) M = n/ v(

  • Q : How haloalkanes are prepared from

    This is the common method for preparing haloalkanes in laboratory. Alcohols can be converted to haloalkanes by substitution of - OH group with a halogen atom. Different reagents can be used to get haloa