--%>

Define Bond Energies - Bond Charges

Energy changes in some chemical reactions can be used to deduce the energies of chemical bonds.


Our understanding of the molecular basis of thermodynamic properties is extended when we ask why the enthalpy change for a reaction is what it is. We deduce, for example, from the data, the value of -802.34 kJ for ΔH°298 for the reaction:

2145_bond energy.png 
 
Why it is the enthalpy change has this value?

Two relatively small contributions to the ?H term can be recognized. One contribution comes from the difference in the normal products of the thermal energies of the molecules of the products and the reactants. Another small contribution due to the volume comes from the change in number of moles of reagents.

These minor complicating contributions can be avoided by using ?H00 = ?UC values such as those o f appendix table to calculate the ?U00 value of - 804.2 kJ for the methane combination reaction. Now we ask about the molecular basis of this energy difference.

To answer such question, we adopt a traditional chemical idea. We think of the energies of many substances in terms of the chemical bonds that we imagine to be holding the atoms together. The energy of one substance compared to that of another substance is said to be due primarily to the energy "strength" of the chemical bonds.

Standard enthalpies of atomic species: we need to justify the energy data for the free gaseous atoms to calculate the energy change when the molecules of a substance are broken up into free atoms.

Enthalpy and energy data can be taken for gaseous atomic substances. These data come, usually, from spectroscopic rather from calorimetric measurements. For diametric molecules, spectral studies show the energy for breakup of these molecules into atoms. Results from the original molecules and the atoms produced, all in their lowest energy, or ground states, can be deduced from the spectral data. Thus we arrive directly at data for ?H°f,0. these energy data for atomic species can be extended to give enthalpy values, as illustrated by some of the entries in bond energies.

Bond energies: with the data begin by considering reactions that are easily given a bond energy interpretation. For example, the ΔH° ƒ, 0 can be used to obtain:

199_bond energy1.png

   Related Questions in Chemistry

  • Q : Electron Spin The total angular

    The total angular momentum of an atom includes an electron spin component as well as an orbital component.The orbital motion of each electron of an atom contributes to the angular momentum of the atom, as described earlier. An additional

  • Q : Coordination compounds discuss

    discuss practical uses of coordination compounds

  • Q : Molarity A solution has volume 200ml

    A solution has volume 200ml and molarity 0.1.if it is diluted 5times then calculate the molarity of reasulying solution and the amount of water added to it.

  • Q : Problem associated to vapour pressure

    Provide solution of this question. 60 gm of Urea (Mol. wt 60) was dissolved in 9.9 moles, of water. If the vapour pressure of pure water is P0 , the vapour pressure of solution is:(a) 0.10P0 (b) 1.10P0 (c) 0.90P0 (d) 0.99P0

  • Q : Vapour pressure of water Give me answer

    Give me answer of this question. 5cm3 of acetone is added to 100cm3 of water, the vapour pressure of water over the solution: (a) It will be equal to the vapour pressure of pure water (b) It will be less than the vapour pressure of pure water

  • Q : Explain physical properties of

    . Boiling pointsThe boiling points of monohalogen derivatives of benzene, which are all liquids, follow the orderIodo > Bromo > ChloroThe boiling points of isomeric dihalobe

  • Q : C-X bond length in halobenzene less

    C-X bond length in halobenzene less then C-X bond lengthin CH3-x

  • Q : Schrodinger equation with particle in a

    Three dimensional applications of the Schrodinger equation are introduced by the particle-in-a-box problem.So far only a one-dimensional problem has been solved by application of the Schrodinger equation. Now the allowed energies and the probability functi

  • Q : Polyhalogen compounds introduction for

    introduction for polyhalogen compound

  • Q : Statement of Henry law Determine the

    Determine the correct regarding Henry’s law: (1) The gas is in contact with the liquid must behave as an ideal gas (2) There must not be any chemical interaction among the gas and liquid (3) The pressure applied must be high (4) All of these.