--%>

Define Bond Energies - Bond Charges

Energy changes in some chemical reactions can be used to deduce the energies of chemical bonds.


Our understanding of the molecular basis of thermodynamic properties is extended when we ask why the enthalpy change for a reaction is what it is. We deduce, for example, from the data, the value of -802.34 kJ for ΔH°298 for the reaction:

2145_bond energy.png 
 
Why it is the enthalpy change has this value?

Two relatively small contributions to the ?H term can be recognized. One contribution comes from the difference in the normal products of the thermal energies of the molecules of the products and the reactants. Another small contribution due to the volume comes from the change in number of moles of reagents.

These minor complicating contributions can be avoided by using ?H00 = ?UC values such as those o f appendix table to calculate the ?U00 value of - 804.2 kJ for the methane combination reaction. Now we ask about the molecular basis of this energy difference.

To answer such question, we adopt a traditional chemical idea. We think of the energies of many substances in terms of the chemical bonds that we imagine to be holding the atoms together. The energy of one substance compared to that of another substance is said to be due primarily to the energy "strength" of the chemical bonds.

Standard enthalpies of atomic species: we need to justify the energy data for the free gaseous atoms to calculate the energy change when the molecules of a substance are broken up into free atoms.

Enthalpy and energy data can be taken for gaseous atomic substances. These data come, usually, from spectroscopic rather from calorimetric measurements. For diametric molecules, spectral studies show the energy for breakup of these molecules into atoms. Results from the original molecules and the atoms produced, all in their lowest energy, or ground states, can be deduced from the spectral data. Thus we arrive directly at data for ?H°f,0. these energy data for atomic species can be extended to give enthalpy values, as illustrated by some of the entries in bond energies.

Bond energies: with the data begin by considering reactions that are easily given a bond energy interpretation. For example, the ΔH° ƒ, 0 can be used to obtain:

199_bond energy1.png

   Related Questions in Chemistry

  • Q : Ionization Potential Second ionization

    Second ionization potential of Li, Be and B is in the order (a)Li>Be>B (b)Li>B>Be (c)Be>Li>B (d)B>Be>Li

  • Q : Question based on strength of solution

    Help me to go through this problem. On dissolving 1 mole of each of the following acids in 1 litre water, the acid which does not give a solution of strength 1N is: (a) HCl (b) Perchloric acid (c) HNO3 (d) Phosphoric acid

  • Q : Relative lowering in vapour pressure of

    Give me answer of this question. "Relative lowering in vapour pressure of solution containing non-volatile solute is directly proportional to mole fraction of solute". Above statement is: (a) Henry law (b) Dulong and Petit law (c) Raoult's law (d) Le-Chatelier's pri

  • Q : Theory of three dimensional motion

    Partition function; that the translational energy of 1 mol of molecules is 3/2 RT will come as no surprise. But the calculation of this result further illustrates the use of quantized states and the partition function to obtain macroscopic properties. The partition fu

  • Q : Ddd 4) The addition of S2- ion to

    4) The addition of S2- ion to Fe(OH)2(s). Explain why the addition of S2- ion to Cr(OH)3(s) does not result in the formation of Cr2S3(s).

  • Q : Help 1) Chromium(III) hydroxide is

    1) Chromium(III) hydroxide is highly insoluble in distilled water but dissolves readily in either acidic or basic solution. Briefly explain why the compound can dissolve in acidic or in basic but not in neutral solution. Write appropriate equations to support your answer. 2) Explain how dissolving t

  • Q : Molarity in Nacl The molarity of 0.006

    The molarity of 0.006 mole of NaCl in 100 solutions will be: (i) 0.6 (ii) 0.06 (iii) 0.006 (iv) 0.066 (v) None of theseChoose the right answer from above.Answer: The right answer is (ii) M = n/ v(

  • Q : Mole fraction of water and ethanol Give

    Give me answer of this question. A solution contains 1 mole of water and 4 mole of ethanol. The mole fraction of water and ethanol will be: (a) 0.2 water + 0.8 ethanol (b) 0.4 water + 0.6 ethanol (c) 0.6 water + 0.8 ethanol (d) 0.8 water + 0.2 ethanol

  • Q : What is schrodinger wave equation? The

    The Schrodinger wave equation generalizes the fitting-in-of-waves procedure.The waves that "fit" into the region to which the particle is contained can be recognized "by inspection" only for a few simple systems. For other problem a mathematical procedure

  • Q : M ive me answer of this question. When

    ive me answer of this question. When mercuric iodide is added to the aqueous solution of potassium iodide, the: (a) Freezing point is raised (b) Freezing point is lowered (c) Freezing point does not change (d) Boiling point does not change