--%>

Define Virial Equation

The constant of vander Waal's equation can be related to the coefficients of the virial equation. 

Vander Waal's equation provides a good overall description of the real gas PVT behaviour. Now let us focus on the description that this equation gives to the onset of nonideal behaviour. This stage is shown most clearly on displays of Z = PV/(RT) versus P. the first deviations from the ideal gas value of Z = 1 show up as straight line sections in Z-versus-P plots. These initial stages of non ideal behaviour are described by the simple virial expressions Z = 1 + BPP or Z = 1 + BV/V. we begin, therefore, by rearranging van der Waal's equation to a form that can be compared with the virial equations.

Multiplication of van der Waal's equation, in the form and for 1 mol by V/(RT) converts this equation to 

PV/RT = V/(V - b) - a/RTV = 1/(1 - b/V) - a/RTV


We develop an equation with the form of the virial equation with volume terms by recognizing that the 1/(1 - b/V) term can be expanded by using the binomial expansion (1 - x)-1 = 1 + x + x2 + .... If only the first three terms of the series are exhibited, we develop to

54_virial equation.png 

Comparison with virial equations, shows that van der Waals' equation implies the definition

BV = b - a/RT 

Experimental values for BV for neon are plotted, notice that the temperature dependence of this second virial coefficient is generally consistent with that suggested values of BV are negative at low temperatures where the second term dominates, and these values increase and become positive at higher temperatures where the first term dominates. The curve is drawn on the basis with a and b values adjusted to give a good fit to the experimental results. Fitting second virial coefficient data provides, as this example illustrates, another way for assigning values to van der Waals' a and b parameters.

Van der Waals' excluded volume and molecular diameters

The excluded volume b, introduced by van der Waals' as an empirical correction term, can be related to the size of the gas molecules. To do so, we assume the excluded volume is the result pairwise coming together of molecules. This assumption is justified when b values are obtained from second virial coefficient data. Fitting values for the empirical constants of van der Waals' equation. 

So that we need to deal with a single molecular size parameter, we treat molecules as spherical particles. The diameter of a molecule is d. the volume of a molecule is 4/3 ∏ (d/2)3.
The volume in which a pair of molecules cannot move because of each other's presence is indicated by the lightly shaded region. The radius of this excluded volume sphere is equal to the molecular diameter d. the volume excluded to the pair of molecules is 4/3∏d3. We thus obtain
Excluded volume per molecule = ½ (4/3 ∏d3)

= 4[4/3∏(d/2)3]


The expression in brackets is the volume of a molecule. Thus the excluded volume per molecule is 4 times the actual volume of the molecule.

Van der Waals' b term is the excluded volume per mole of molecules. Thus we have, with N representing Avogadro's number


B = 4 N [4/3∏ (d/2)3] = 4 N (volume of molecule)

Molecular size and Lennard-Jones Intermolecular attraction term based on second virial coefficient data:

Gas Excluded volume b, L mol-1 Molecular diam. D, pm εLJ, J × 10-21
He 0.021 255 0.14
Ne 0.026 274 0.49
Ar 0.050 341 1.68
Kr 0.058 358 2.49
Xe 0.084 405 3.11
H2 0.031 291 0.52
N2 0.061 364 1.28
O2 0.058 358 1.59
CH4 0.069 380 1.96
C(CH3)4 0.510 739 3.22

 

   Related Questions in Chemistry

  • Q : Explain Photoelectron Spectroscopy. The

    The energies of both the outer and inner orbitals of atoms and molecules can be determined by photoelectron spectroscopy.Energy changes of the outermost or highest energy electron of molecules were dealt with here in a different passion. The energies of ot

  • Q : Explanation of oxygen family. Group 16

    Group 16 of periodic

  • Q : Basic concepts Determination of correct

    Determination of correct mol. Mass from Roult's law is applicable to :

  • Q : What is depression in freezing point?

    Freezing point of a substance is the temperature at which solid and liquid phases of the substance coexist. It is defined as the temperature at which its solid and liquid phases have the same vapour pressure. The freezing point o

  • Q : Macromolecules what are condensation

    what are condensation polymerization give in with 2 examples

  • Q : Solubility of a gas The solubility of a

    The solubility of a gas in water depends on: (a) Nature of the gas (b) Temperature (c) Pressure of the gas (d) All of the above. Can someone help me in finding out the right answer.

  • Q : Problem based on lowering in vapour

    Help me to solve this problem. An aqueous solution of glucose was prepared by dissolving 18 g of glucose in 90 g of water. The relative lowering in vapour pressure is: (a) 0.02 (b)1 (c) 20 (d)180

  • Q : Colligative property related question

    Select the right answer of the question. Which of the following is not a colligative property : (a) Osmotic pressure (b) Elevation in B.P (c) Vapour pressure (d) Depression in freezing point

  • Q : Neutralization of benzoic acid Choose

    Choose the right answer from following. How many grams of NaOH will be required to neutralize 12.2 grams of benzoic acid : (a) 40gms (b) 4gms (c)16gms (d)12.2gms

  • Q : What are emulsions?Describe its

    Emulsions are colloidal solutions in which disperse phase as well as dispersion medium is both liquids. Emulsions can be broadly classified into two types: (i) Oil in water (O/W type) emulsions: in this type of emulsions, oil acts disperse phase and water acts