--%>

Explain Uncertainty principle

Uncertainty principle (W. Heisenberg; 1927): A principle, central to the quantum mechanics that states which two complementary parameters (like energy and time, position and momentum, or angular momentum and angular displacement) can’t both be recognized to the infinite accuracy; the more you know regarding one, the less you know regarding the other.

It can be exemplified in a fairly clear manner as it relates to position versus momentum: To see something (let's state an electron), we have to fire the photons at it; they bounce off and come back to us, therefore we can "see" it. When you select low-frequency photons, with a low energy, they do not impart a lot momentum to the electron; however they give you a very fuzzy picture, therefore you have a higher uncertainty in position and hence you can contain a higher certainty in the momentum. On other hand, when you were to fire very high-energy photons (that is x-rays or gammas) at the electron, they would provide you a very apparent picture of where the electron is (that is, higher certainty in position), however would impart a big deal of momentum to the electron (that is, higher uncertainty in the momentum).

In a more generalized intellect, the uncertainty principle states us that the performance of observing modifications the observed in primary way.

   Related Questions in Physics

  • Q : What is Standard quantum limit Standard

    Standard quantum limit: It is the limit obligatory on standard techniques of measurement by the uncertainty principle in quantum mechanics.

  • Q : Explain Coanda effect Coanda effect:

    Coanda effect: The effect which points out that a fluid tends to flow all along a surface, instead of flowing via free space.

  • Q : Explain Davisson-Germer experiment

    Davisson-Germer experiment (C.J. Davisson, L.H. Germer; 1927): The experiment which conclusively proved the wave nature of electrons; diffraction patterns were examined by an electron beam penetrating into the nickel target.

  • Q : Explain Event horizon Event horizon:

    Event horizon: The radius which a spherical mass should be compressed to in order to convert it into a black hole, or the radius at which the time and space switch responsibilities. Once within the event horizon, it is basically impossible to escape t

  • Q : Define Tesla or SI unit of the magnetic

    Tesla: T (after N. Tesla, 1870-1943): The derived SI unit of the magnetic flux density stated as the magnetic flux density of a magnetic flux of 1 Wb via an area of 1 m2; it therefore has units of Wb/m2.

  • Q : Problem on multiplexed channels 4

    4 channels, two with a bit-rate of 200 kbps and two with a bit-rate of 150 Kbps are to be multiplexed employing multiple slots TDM with no sync bits. a. Find out the size of a frame in bits?

    Q : Define Volt or SI unit of electric

    Volt: V (after A. Volta, 1745-1827): The derived SI unit of electric potential, stated as the difference of potential among the two points on a conductor fetching  a constant current of 1 A whenever the power dissipated between the points is 1 W;

  • Q : Explain Newtons law of universal

    Newton's law of universal gravitation (Sir I. Newton): Two bodies exert a pull on each other with equivalent and opposite forces; the magnitude of this force is proportional to the product result of the two masses and is too proportional to the invers

  • Q : Define Pascal or SI unit of pressure

    Pascal: Pa The derived SI unit of pressure stated as 1 N acting over a region of 1 m2; it therefore has units of N/m2

  • Q : What is Laplace equation Laplace

    Laplace equation (P. Laplace): For the steady-state heat conduction in 1-dimension, the temperature distribution is the explanation to Laplace's equation, which defines that the second derivative of temperature with respect to displac