--%>

Explain Uncertainty principle

Uncertainty principle (W. Heisenberg; 1927): A principle, central to the quantum mechanics that states which two complementary parameters (like energy and time, position and momentum, or angular momentum and angular displacement) can’t both be recognized to the infinite accuracy; the more you know regarding one, the less you know regarding the other.

It can be exemplified in a fairly clear manner as it relates to position versus momentum: To see something (let's state an electron), we have to fire the photons at it; they bounce off and come back to us, therefore we can "see" it. When you select low-frequency photons, with a low energy, they do not impart a lot momentum to the electron; however they give you a very fuzzy picture, therefore you have a higher uncertainty in position and hence you can contain a higher certainty in the momentum. On other hand, when you were to fire very high-energy photons (that is x-rays or gammas) at the electron, they would provide you a very apparent picture of where the electron is (that is, higher certainty in position), however would impart a big deal of momentum to the electron (that is, higher uncertainty in the momentum).

In a more generalized intellect, the uncertainty principle states us that the performance of observing modifications the observed in primary way.

   Related Questions in Physics

  • Q : Scanning electron and transmission

    Give one benefit of a scanning electron microscope over the transmission electron microscope? Briefly explain it.

  • Q : Radioactive dating-Determining of age

    In the radioactive dating we use half life to find out the age of a sample however not average life why? Describe.

  • Q : What is Permeability of free space or

    Permeability of free space: magnetic constant: mu_0: The ratio of the magnetic flux density in the substance to the external field strength for vacuum. It is equivalent to 4 pi x 10-7 H/m.

  • Q : Becquerel Becquerel : Bq (after A.H.

    Becquerel: Bq (after A.H. Becquerel, 1852-1908) - The derived SI unit of the activity stated as the activity of radionuclide decay at a rate, on the average, of one nuclear transition every 1 s; it hence has units of s-1.

  • Q : What is Bode's law Bode's law :

    Bode's law: Titius-Bode law - The mathematical formula that generates, with a fair quantity of accuracy, the semi major axes of the planets in out of order from the Sun. Write down the progression 0, 3, 6, 12, 24,

  • Q : What is Magnus effect Magnus effect :

    Magnus effect: The rotating cylinder in a moving fluid drags a few of the fluid about with it, in its direction of rotation. This raises the speed in that area, and therefore the pressure is lower. Therefore, there is a total force on the cylinder in

  • Q : Non-Parametric Tests Activity

    Activity 9:   Non-Parametric Tests    4Non-Parametric Tests While you have learned a number of parametric statistical techniques, you are also aware that if the assumptions related to

  • Q : Define Systeme Internationale d'Unites

    Systeme Internationale d'Unites (SI): The rationalized and coherent system of units derived from the m.k.s. system (that itself is derived from metric system) in common utilization in physics nowadays.

  • Q : Define Hertz or SI unit of frequency

    Define Hertz or SI unit of frequency: Hertz: Hz (after H. Hertz, 1857-1894): The derived SI unit of frequency, stated as a frequency of 1 cycle per s; it therefore has units of s-1.

  • Q : Problem on waveforms The voltage v mV

    The voltage v mV in a circuit is given by: v = 20 sin (200 Πt - 0.7854)           where t is the time in seconds (a) State the amplitude, frequency, period and phase angle of v.(b) Determine the initial voltage.(c) Determin