--%>

Explain Uncertainty principle

Uncertainty principle (W. Heisenberg; 1927): A principle, central to the quantum mechanics that states which two complementary parameters (like energy and time, position and momentum, or angular momentum and angular displacement) can’t both be recognized to the infinite accuracy; the more you know regarding one, the less you know regarding the other.

It can be exemplified in a fairly clear manner as it relates to position versus momentum: To see something (let's state an electron), we have to fire the photons at it; they bounce off and come back to us, therefore we can "see" it. When you select low-frequency photons, with a low energy, they do not impart a lot momentum to the electron; however they give you a very fuzzy picture, therefore you have a higher uncertainty in position and hence you can contain a higher certainty in the momentum. On other hand, when you were to fire very high-energy photons (that is x-rays or gammas) at the electron, they would provide you a very apparent picture of where the electron is (that is, higher certainty in position), however would impart a big deal of momentum to the electron (that is, higher uncertainty in the momentum).

In a more generalized intellect, the uncertainty principle states us that the performance of observing modifications the observed in primary way.

   Related Questions in Physics

  • Q : Problem on dot equivalent Obtain the

    Obtain the “dot” equivalent for the circuit shown below and use it to find the equivalent inductive reactance. 2141_dot.jpg

    Q : Define Photovoltaics Photovoltaics (PV)

    Photovoltaics (PV): It transform light directly into electricity. The typical current residential installation of 12m2 could produce around 1,300 kWh pa with a peak of around 1.9kW, though larger and more efficient installations are possibl

  • Q : Calculate the intensity I along y axis

    As shown in the figure below, a source at S is sending out a spherical wave: E1=(A×D/r) cos(wt-2πr/λ); where r is the distance to source

  • Q : What is Roche limit Roche limit : The

    Roche limit: The position about a massive body where the tidal forces due to the gravity of the primary equivalent or exceed the surface gravity of a specified satellite. Within the Roche limit, such a satellite will be interrupted by tides.

  • Q : Define Systeme Internationale d'Unites

    Systeme Internationale d'Unites (SI): The rationalized and coherent system of units derived from the m.k.s. system (that itself is derived from metric system) in common utilization in physics nowadays.

  • Q : Explain Malus law Malus' law (E.L.

    Malus' law (E.L. Malus): The light intensity I of a ray with primary intensity I0 travelling via a polarizer at an angle theta among the polarization of the light ray and the polarization axis of the polarizer is specified by:

    Q : What is Wiens displacement law constant

    Wien's displacement law constant, b: It is the constant of Wien displacement law. This has the value of 2.897 756 x 10-3 m K.

  • Q : Define Parsec Parsec : The unit of

    Parsec: The unit of distance stated as the distance pointed by an Earth-orbit parallax of 1 arcsec. It equals around 206 264 au, or about 3.086 x 1016 m

  • Q : Steps to the scientific notation

    Illustrate the steps to the scientific notation? Briefly illustrate the steps.

  • Q : Explain Pascals principle Pascal's

    Pascal's principle: The pressure exerted to an enclosed incompressible static fluid is transmitted undiminished to all portions of the fluid.