--%>

Explain Uncertainty principle

Uncertainty principle (W. Heisenberg; 1927): A principle, central to the quantum mechanics that states which two complementary parameters (like energy and time, position and momentum, or angular momentum and angular displacement) can’t both be recognized to the infinite accuracy; the more you know regarding one, the less you know regarding the other.

It can be exemplified in a fairly clear manner as it relates to position versus momentum: To see something (let's state an electron), we have to fire the photons at it; they bounce off and come back to us, therefore we can "see" it. When you select low-frequency photons, with a low energy, they do not impart a lot momentum to the electron; however they give you a very fuzzy picture, therefore you have a higher uncertainty in position and hence you can contain a higher certainty in the momentum. On other hand, when you were to fire very high-energy photons (that is x-rays or gammas) at the electron, they would provide you a very apparent picture of where the electron is (that is, higher certainty in position), however would impart a big deal of momentum to the electron (that is, higher uncertainty in the momentum).

In a more generalized intellect, the uncertainty principle states us that the performance of observing modifications the observed in primary way.

   Related Questions in Physics

  • Q : Explain Lagrange points Lagrange points

    Lagrange points: The points in the vicinity of two massive bodies (like the Earth and Moon) with each others' relevant gravities balance. There are five, labeled L1 via L5. L1, L2, and L3 lie all along the centerline among the centers

  • Q : What is Coriolis pseudoforce Coriolis

    Coriolis pseudoforce (G. de Coriolis; 1835): The pseudoforce that arises since of motion relative to a frame that is itself rotating relative to the second, inertial frame. The magnitude of the Coriolis "force" is tot

  • Q : Define Joule or SI unit of energy Joule

    Joule: J (after J.P. Joule, 1818-1889): The derived SI unit of energy stated as the quantity of work done by moving an object via a distance of 1 m by exerting a force of 1 N; it therefore has units of N m.

  • Q : Explain Newtons law of universal

    Newton's law of universal gravitation (Sir I. Newton): Two bodies exert a pull on each other with equivalent and opposite forces; the magnitude of this force is proportional to the product result of the two masses and is too proportional to the invers

  • Q : Define Faint Faint , young sun paradox

    Faint, young sun paradox: The theories of stellar evolution point out that as stars mature on the main series, they grow gradually hotter and brighter; computations propose that at as regards the time of the formation of Earth, the Su

  • Q : Possibility to obtain the electron Is

    Is it possible to obtain the electron (or come out) from the nucleus?

  • Q : Define Einstein-Podolsky-Rosen effect

    Einstein-Podolsky-Rosen effect: EPR effect: Consider the subsequent quantum mechanical thought-experiment: Take a particle that is at rest and has spun zero (0). This spontaneously decays into two fermions (spin 1/2 particles), that stream away in the

  • Q : Conservation laws and illustrations of

    Explain Conservation laws and illustrations of conservation laws (Conservation of mass-energy, electric charge, linear momentum and angular momentum) ? Conservation laws: The law which states that,

  • Q : Define Dirac constant Dirac constant :

    Dirac constant: Planck constant, modified form; hbar Sometimes more suitable form of the Planck constant, stated as: hbar = h/(2 pi)

  • Q : How radiation emitted from the body

    Describe the procedure how radiation emitted from the body? Illustrate in brief.