--%>

Explain Uncertainty principle

Uncertainty principle (W. Heisenberg; 1927): A principle, central to the quantum mechanics that states which two complementary parameters (like energy and time, position and momentum, or angular momentum and angular displacement) can’t both be recognized to the infinite accuracy; the more you know regarding one, the less you know regarding the other.

It can be exemplified in a fairly clear manner as it relates to position versus momentum: To see something (let's state an electron), we have to fire the photons at it; they bounce off and come back to us, therefore we can "see" it. When you select low-frequency photons, with a low energy, they do not impart a lot momentum to the electron; however they give you a very fuzzy picture, therefore you have a higher uncertainty in position and hence you can contain a higher certainty in the momentum. On other hand, when you were to fire very high-energy photons (that is x-rays or gammas) at the electron, they would provide you a very apparent picture of where the electron is (that is, higher certainty in position), however would impart a big deal of momentum to the electron (that is, higher uncertainty in the momentum).

In a more generalized intellect, the uncertainty principle states us that the performance of observing modifications the observed in primary way.

   Related Questions in Physics

  • Q : What is Paschen series Paschen series:

    Paschen series: The series that explains the emission spectrum of hydrogen whenever the electron is jumping to the third orbital. Each and every line is in the infrared part of the spectrum.

  • Q : Define Joule or SI unit of energy Joule

    Joule: J (after J.P. Joule, 1818-1889): The derived SI unit of energy stated as the quantity of work done by moving an object via a distance of 1 m by exerting a force of 1 N; it therefore has units of N m.

  • Q : Weak equivalence or principle of

    Weak equivalence principle: principle of uniqueness of freefall: The idea in general relativity is that the world-line of a freefalling body is sovereign of its composition, structure, or state. This principle, hold by Newtonian mechanics and gravitat

  • Q : Define Kelvin or basic SI unit of

    Define Kelvin or basic SI unit of thermodynamic temperature: Kelvin: K (after Lord Kelvin, 1824-1907): The basic SI unit of thermodynamic temperature stated as 1/273.16 of the thermodynamic temperature of triple point of the water.

  • Q : When the intermolecular forces are

    Describe when the intermolecular forces are strongest? Briefly state it.

  • Q : Fission and Fusion What do you mean by

    What do you mean by Fission and Fusion?

  • Q : How fireworks turn to shapes similar to

    Briefly illustrate how do fireworks turn to shapes similar to hearts and stars?

  • Q : What is Bernoulli's equation

    Bernoulli's equation - In an ir-rotational fluid, the sum of static pressure, the weight of the fluid per unit mass times the height and half of the density times the velocity squared is steady all through the fluid 

  • Q : Why heat causes matter to expand What

    What is the reason that heat causes matter to expand? Briefly explain it.

  • Q : Problem on synchronous TDM We require

    We require using synchronous TDM and joining 20 digital sources, each of 100 Kbps. Each and every output slot carries 1 bit for each digital source, however one extra bit is added up to each frame for synchronization.

    Discover Q & A

    Leading Solution Library
    Avail More Than 1416195 Solved problems, classrooms assignments, textbook's solutions, for quick Downloads
    No hassle, Instant Access
    Start Discovering

    18,76,764

    1931299
    Asked

    3,689

    Active Tutors

    1416195

    Questions
    Answered

    Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!

    Submit Assignment

    ©TutorsGlobe All rights reserved 2022-2023.