--%>

Explain Twin paradox

Twin paradox: One of the most well-known "paradoxes" in history, predicted by Sir Einstein's special theory of relativity. It takes two twins, born on similar date on Earth. One, Albert, leaves home for a trip about the Universe at very high speeds (very close up to that of light), whereas the other, Henrik, remains at home at rests. The special relativity predicts that whenever Albert returns, he will discover himself much younger than the Henrik.

That is really not the paradox. The paradox stems from challenging to naively examine the condition to figure out why. From Henrik's point of view (and from everybody else on Earth), the Albert appears to speed off for an elongated time, linger around, and then come back. Therefore he must be the younger one, which is what we observe. However from Albert's point of view, it's Henrik (and the entire of the Earth) which are travelling, not he. According to the special relativity, when Henrik is moving associative to Albert, then Albert must compute his clock as ticking slower -- and therefore Henrik is the one who must be younger. However this is not what occurs.

So what is wrong with our investigation? The key point here is that the regularity was broken. Albert did somewhat that Henrik did not – the Albert accelerated in turning around. Henrik did no accelerating, as he and every one the other people on the Earth can attest to (neglect gravity). Therefore Albert broke the symmetry, and whenever he returns, he is the younger one.

   Related Questions in Physics

  • Q : Define Lumen or SI unit of luminous flux

    Lumen: lm: The derived SI unit of luminous flux, stated as the luminous flux produced by a uniform point source of 1 cd releasing its luminous energy over a solid angle of 1 sr; it therefore has units of cd sr.

  • Q : What is Hawking temperature Hawking

    Hawking temperature: The temperature of a black hole is caused by the emission of the hawking radiation. For a black hole with mass m, it is illustrated as: T = (hbar c3)/(8 pi G k m).

  • Q : Explain Joules laws and Joule's

    Joule's laws (J.P. Joule) Joule's first law: The heat Q generated whenever a current I flows via a resistance R for a specified time t is specified by: Q = I2

  • Q : Define Ergosphere Ergosphere: The area

    Ergosphere: The area around a rotating black hole, among the event horizon and the static limit, where the rotational energy can be removed from the black hole.

  • Q : Define Josephson effects Josephson

    Josephson effects (B.D. Josephson; 1962): Electrical effects examined whenever two superconducting materials are separated by a thin layer of the insulating substance.

  • Q : Ampere's law Explain  Ampere's law?  

    Explain Ampere's law?   Ampere's law (A.M. Ampere):

  • Q : Define Parsec Parsec : The unit of

    Parsec: The unit of distance stated as the distance pointed by an Earth-orbit parallax of 1 arcsec. It equals around 206 264 au, or about 3.086 x 1016 m

  • Q : Steps to the scientific notation

    Illustrate the steps to the scientific notation? Briefly illustrate the steps.

  • Q : Define Newton or SI unit of force

    Newton: N (after Sir I. Newton, 1642-1727): The derived SI unit of force, stated as the force needed to give a mass of 1 kg of an acceleration of 1 m/s2; it therefore has units of kg m/s2.

  • Q : Describe Solar water heating Solar

    Solar water heating: Solar water heaters are simple, reliable, famous and widespread. They are probably the Low Carbon technology closest to being commercially practised. The most efficient designs concentrate solar radiation onto a small diameter tub