--%>

Explain Twin paradox

Twin paradox: One of the most well-known "paradoxes" in history, predicted by Sir Einstein's special theory of relativity. It takes two twins, born on similar date on Earth. One, Albert, leaves home for a trip about the Universe at very high speeds (very close up to that of light), whereas the other, Henrik, remains at home at rests. The special relativity predicts that whenever Albert returns, he will discover himself much younger than the Henrik.

That is really not the paradox. The paradox stems from challenging to naively examine the condition to figure out why. From Henrik's point of view (and from everybody else on Earth), the Albert appears to speed off for an elongated time, linger around, and then come back. Therefore he must be the younger one, which is what we observe. However from Albert's point of view, it's Henrik (and the entire of the Earth) which are travelling, not he. According to the special relativity, when Henrik is moving associative to Albert, then Albert must compute his clock as ticking slower -- and therefore Henrik is the one who must be younger. However this is not what occurs.

So what is wrong with our investigation? The key point here is that the regularity was broken. Albert did somewhat that Henrik did not – the Albert accelerated in turning around. Henrik did no accelerating, as he and every one the other people on the Earth can attest to (neglect gravity). Therefore Albert broke the symmetry, and whenever he returns, he is the younger one.

   Related Questions in Physics

  • Q : What is Geometrized units Geometrized

    Geometrized units: The system of units whereby certain basic constants (G, c, k, and h) are set to unison. This makes computations in certain theories, like general relativity, much simpler to deal with, as such constants appear often.

    Q : Define Ehrenfest paradox Ehrenfest

    Ehrenfest paradox (Ehernfest, 1909): The special relativistic "paradox" including a fast rotating disc. As any radial segment of the disc is perpendicular to the direction of motion, there must be no length contraction of the radius;

  • Q : What nucleons altogether in a nucleus

    Explain what does held the nucleons altogether in a nucleus?

  • Q : Features or characteristics of dead

    Write a short note on the features or characteristics of dead stars?

  • Q : Define Le Chateliers principle Le

    Le Chatelier's principle (H. Le Chatelier; 1888): When a system is in equilibrium, then any modification imposed on the system tends to shift the equilibrium state to decrease the consequence of that applied change.

  • Q : Define Relativity principle Relativity

    Relativity principle: The principle, utilized by Einstein's relativity theories, that the laws of physics are similar, at least qualitatively, in all frames. That is, there is no frame which is better (or qualitatively any different) from any other. T

  • Q : Conservation laws and illustrations of

    Explain Conservation laws and illustrations of conservation laws (Conservation of mass-energy, electric charge, linear momentum and angular momentum) ? Conservation laws: The law which states that,

  • Q : Non-Parametric Tests Activity

    Activity 9:   Non-Parametric Tests    4Non-Parametric Tests While you have learned a number of parametric statistical techniques, you are also aware that if the assumptions related to

  • Q : What is Causality principle Causality

    Causality principle: The principle which cause must always precede effect. More properly, when an event A ("the cause") somehow persuades an event B ("the effect") that take

  • Q : What is Coriolis pseudoforce Coriolis

    Coriolis pseudoforce (G. de Coriolis; 1835): The pseudoforce that arises since of motion relative to a frame that is itself rotating relative to the second, inertial frame. The magnitude of the Coriolis "force" is tot