--%>

Explain the process of adsorption of solids on gases.

The extent of adsorption of a gas on a solid adsorbent is affected by the following factors:

1. Nature of the gas

Since physical adsorption is non-specific in nature, every gas will get adsorbed on the surface of any solid to a lesser or greater extent. However, under given conditions of temperature and pressure, the easily liquefiable gases like NH3, HCl, CO2 etc. are adsorbed in a greater extent than the permanent gases such as H2, O2, N2 etc. it is because the van der Waal forces or molecular forces are more predominant in the former than in later category.

The ease with which a gas can be liquefied is mainly determined by its critical temperature Tc, Critical temperature of a gas is the temperature above which the gas cannot be liquefied irrespective of the pressure applied. A gas having higher critical temperature can be liquefied more easily and hence is adsorbed on the solid to greater and extent of adsorption for some gases.

We know that chemisorption is specific in nature. Therefore, in case of chemisorption a gas gets adsorbed on the solid only if it forms chemical bond with it.

2. Effect of nature of the adsorbent

The extent of adsorption of a gas also depends on the nature of adsorbent. Activated charcoal more easily adsorbs toxic gases like CH4, CO, etc. allows its frequent use in gas masks. Finely divided transition metals like Ni, CO, etc. adsorb permanent gases like H2N2O2, etc.

3. Specific area of the solid

Specific area of an adsorbing solid is the surface area available for adsorption per gram of the adsorbent. Greater the specific area of the solid, greater would be its adsorbent power. That is why porous or finely divided forms of adsorbents adsorb more extensively. However, the pores should be large enough to allow the gas molecules to allow the gas molecules to enter them.

4. Effect of pressure of the gas

In order to understood the effect of pressure on the adsorption of a gas on some solid, we must keep in mind that adsorption is a reversible process and is accompanied by decrease in pressure. Therefore, it is expected that a given temperature, the extent of the adsorption increases with the increase in pressure. The extent of the adsorption is generally expressed as x/m where m is the mass of the adsorbent and x is that of the adsorbate when equilibrium has been attained. A graph drawn between extent of adsorption (x/m) and the pressure p of the gas at constant temperature is called adsorption isotherm. Adsorption isotherms of different shapes have been observed experimentally. Two most common types of adsorption isotherms are Freundlich adsorption isotherms and Langmuir adsorption isotherm.

5. Effect of temperature

As already discussed the adsorption at a surface initially increases till a saturation point is achieved. At this juncture an equilibrium is established as represented below.
                                         
Adsorption  727_Physical adsorption.png  Desorption; Δ H = +ve

As adsorption is accompanied by evolution of heat, so in accordance with Le-Chatelier's principle, the magnitude of adsorption should decrease with rise in temperature and this is actually so.

A graph drawn between extent of adsorption (x/m) and temperature (t) at constant pressure is called adsorption isobar. 

6. Activation of adsorbent

Activation of an adsorbent means increasing the adsorbing power of the adsorbent. This can be done in various different ways. One possible way of doing it is to increase the specific area of the adsorbent. This can be done either by making the surface of adsorbent or by breaking it into small pieces. However, if the particles are made very small, then the interparticle spaces will be too small to allow the penetration of gas molecules and hence, the extent of adsorption may increase by certain specific treatments. For example, wood charcoal can be activated by heating it between 650 K and 1330 K in vacuum, air or super-heated steam.

   Related Questions in Chemistry

  • Q : From where the tin is obtained From

    From where the tin is obtained? Briefly illustrate it.

  • Q : Chemistry brief discription of relative

    brief discription of relative lowering of vapour pressure

  • Q : Water under pressure problem-henry law

    Can someone help me in going through this problem. The statement “When 0.003 moles of a gas are dissolved in 900 gm of water under a pressure of 1 atm, 0.006 moles will be dissolved under the pressure of 2 atm", signfies: (a)

  • Q : Wavelengths which the human eye can see

    Briefly state the wavelengths which the human eye can see?

  • Q : Application of colligative properties

    Choose the right answer from following. Colligative properties are used for the determination of: (a) Molar Mass (b) Equivalent weight (c) Arrangement of molecules (d) Melting point and boiling point (d) Both (a) and (b)  

  • Q : Problem on distribution law The

    The distribution law is exerted for the distribution of basic acid among: (i) Water and ethyl alcohol (ii) Water and amyl alcohol (iii) Water and sulphuric acid (iv) Water and liquor ammonia What is the right answer.

  • Q : Concentration factor affected by

    Can someone please help me in getting through this problem. Which of the given concentration factor is affected by the change in temperature: (1) Molarity (2) Molality (3) Mole fraction (4) Weight fraction

  • Q : Describe Enzyme Catalyzed reactions

    Many enzyme catalyzed reactions obeys a complex rate equation that can be written as the total quantity of enzyme and the whole amount of substrate in the reaction system. Many rate equations that are more complex than first and se

  • Q : How to establish nomenclature for

    In the common chemistry terminologies, aliphatic halogen derivatives are named as alkyl halides. The words, n-, sec-, tert-, iso-, neo-, and amyl are

  • Q : Alkaline medium The amount of KMnO 4

    The amount of KMnO4 required to prepare 100 ml of 0.1N solution in alkaline medium is: (a) 1.58 gm (b) 3.16 gm (c) 0.52 gm (d) 0.31 gmAnswer: (a) In alkaline medium KMnO4 act as ox