--%>

Explain the process of adsorption in solution.

The process of adsorption can occurs in solutions also. This implies that the solid surfaces can also adsorb solutes from solutions. Some clarifying examples are listed below:


(i) When an aqueous solution of ethanoic acid (CH3COOH) is shaken with charcoal. The concentration of acid in the solution is found to decrease because a part of acid is adsorbed by charcoal.

(ii) Litmus solution become colourless when it is shaken with charcoal which indicates that the dye of litmus solution is adsorbed by charcoal.

(iii) Mg(OH)2 is colorless but when it is precipitated in the presence of magneton reagent (a bluish dye) the precipitate acquire blue colour due to adsorption of dye on their surface.

It has also been observed that if we have a solution containing more than one solutes, then the solid adsorbents can adsorb certain solutes in preference to other solutes and solvents. The property is made use of in removing colouring matters from solutions of organic substances. For example, raw sugar solution is decolourised by animal charcoal.

Factors affecting adsorption from solutions

Adsorption from solutions by the solid adsorbents depends on the following factors.

(i) Nature of adsorbent and adsorbate

(ii) Temperature: the extent of adsorption, in general, decreases with rise in the surface area of adsorbent.

(iii) Surface area: the extent adsorption increase with the increase in the surface area of adsorbent.

(iv) Concentration: the effect of concentration on the extent of adsorption isotherm similar to Freundlich adsorption isotherm. The relationship between mass of solute adsorbed per gram (x/m) is given by the following relations:
                                                 
x/m = kC1/n              (n > 1)

Taking logarithm, equation becomes
                                               
log x/m = log k + (1/n) log C

A graph between log x/m and log C is a straight line, similar to graph.

Experimental verification of equation can be done by taking equal volume of acetic acid solutions of different concentrations in four different bottles fitted with stoppers. The contents should be well mixed. The concentration of acetic acid is found in each bottle. This concentration refers to equilibrium concentration (c). The difference of original concentration and equilibrium concentration gives the value of amount of acetic acid adsorbed by charcoal (x)log (x/m) values of different plotted against C

   Related Questions in Chemistry

  • Q : Vitamines 7 enzyme cofactor what is the

    what is the relationship between vitamins and enzyme cofactors

  • Q : What do you mean by the term tripod

    What do you mean by the term tripod? Also state its uses?

  • Q : P block why BiF3 is ionic whereas other

    why BiF3 is ionic whereas other trihalides are covalent in nature?

  • Q : Normality of acetic acid Give me answer

    Give me answer of this question. The normality of 10% (weight/volume) acetic acid is: (a)1 N (b)10 N (c)1.7 N (d) 0.83 N

  • Q : Infrared Adsorption The adsorption of

    The adsorption of infrared radiation by diatomic molecules increases the vibrational energy fo molecules and gives information about the force constant for the "spring" of the molecule.;The molecular motion that has the next larger energy level spacing aft

  • Q : Coordination number of a cation The

    The coordination number of a cation engaging a tetrahedral hole is: (a) 6  (b) 8  (c) 12  (d) 4 Answer: (d) The co-ordination number of a cation occupying a tetrahedral hole is 4.

  • Q : Calculation of molecular weight Provide

    Provide solution of this question. In an experiment, 1 g of a non-volatile solute was dissolved in 100 g of acetone (mol. mass = 58) at 298K. The vapour pressure of the solution was found to be 192.5 mm Hg. The molecular weight of the solute is (vapour pressure of ace

  • Q : Mole fraction of urea Choose the right

    Choose the right answer from following. When 6gm urea dissolve in180gm H2O . The mole fraction of urea is : (a)10/ 10.1 (b)10.1/10 (c)10.1/ 0.1 (d) 0.1/ 10.1

  • Q : Sedimentation and Velocity The first

    The first method begins with a well defined layer, or boundary, of solution near the center of rotation and tracks the movement of this layer to the outside of the cell as a function of time. Such a method is termed a sedimentary velocity experiment. A

  • Q : Determining mole fraction of water in

    A mixture has 18 g water and 414 g ethanol. What is the mole fraction of water in mixture (suppose ideal behaviour of mixture): (i) 0.1  (ii) 0.4  (iii) 0.7  (iv) 0.9 Choose the right answer from abo