--%>

Explain the polymers and its types.

Polymers are the chief products of modern chemical industry which form the backbone of present society. Daily life without the discovery and varied applications of polymers would not have been easier and colourful. The materials made of polymers find multifarious uses and applications in all walks of our life. They have influenced our day to day life to such an extent that it is impossible to get through the day without using a material based on polymers. Common examples of these include plastic dishes, cups, non-stick. Pans, automobile tyres and seat covers, plastic bags, rain coats, plastic pipes and fitting radio, TV and computer cabinets; wide range of synthetic fibres for clothing, synthetic glues, flooring materials and materials for biomedical and surgical operations. 

Word polymer means "many parts" (Greek: poly means many and merors means parts). A polymer is a compound of high molecular mass created by the mixture of large number of small molecules. The small molecules which comprise the repeating units in a polymer are known as monomer units. The process by which the monomers are transformed into polymer is called polymerization. For example, polyethylene is a polymer which is obtained by the polymerization of ethylene. The ethylene molecules are referred to as monomer units.
1000_Polymers.png 
As polymers are single and giant molecules, i.e. big size molecules, they are also known as macromolecules.

Homopolymers and copolymers

Polymers are divided into two broad categories depending upon the nature of the repeating structural units. These are homopolymers and co-polymers.

The polymer formed from one kind of monomer is called homopolymers while polymer formed from more than one kind of monomer units is called copolymer or mixed polymer. For example, polyethylene is an example of homopolymers whereas Buna-S rubber which is formed from 1, 3-butadiene (CH2 = CH - CH = CH2) and styrene (C6H5CH = CH2) is an example of copolymer. 

 

 

 

   Related Questions in Chemistry

  • Q : Describe the function of the

    Briefly describe the function of the monosaccharide?

  • Q : What are heterogenous catalysis? Give

    When the catalyst exists in a different phase than that of reactants, it is said to be heterogeneous catalyst, and the catalysis is called heterogeneous catalysis. For example, SO2 can be oxidized to SO3

  • Q : Decision about dipole moment is present

    How can you decide if there is a dipole moment or not?

  • Q : Problem based on lowering in vapour

    Help me to solve this problem. An aqueous solution of glucose was prepared by dissolving 18 g of glucose in 90 g of water. The relative lowering in vapour pressure is: (a) 0.02 (b)1 (c) 20 (d)180

  • Q : Calculating Formulae Superphosphate has

    Superphosphate has the formula CaH4(PO4)2 H2O, what is the calculation to get the percentage of Phosphorus, I need to show the calculation. I know it is 30.9737622 u in weight and 2 atoms of the formula, but not sure how to work the calculation backwards.

  • Q : Hybridization Atomic orbitals can be

    Atomic orbitals can be combined, in a process called hybridization, to describe the bonding in polyatomic molecules. Descriptions of the bonding in CH4 can be used to illustrate the valence bond procedure. We must arrive a

  • Q : Mole fraction of Carbon dioxide Choose

    Choose the right answer from following. If we take 44g of CO2 and 14g of N2 what will be mole fraction of CO2 in the mixture: (a) 1/5 (b) 1/3 (c) 2/3 (d) 1/4

  • Q : Problem on preparing of a solution Give

    Give me answer of this question. How many grams of CH3OH should be added to water to prepare 150 solution of@M CH3 OH: (a) 9.6 (b) 2.4 (c) 9.6x 103 (d) 2.4 x103

  • Q : Determining mole fraction of water in

    A mixture has 18 g water and 414 g ethanol. What is the mole fraction of water in mixture (suppose ideal behaviour of mixture): (i) 0.1  (ii) 0.4  (iii) 0.7  (iv) 0.9 Choose the right answer from abo

  • Q : Biodegradable polymers what are the

    what are the examples of biodegradable polymers