--%>

Explain the molecular mass with respect to polymers.

During the formation of polymers, different macromolecules have different degree of polymerisation i.e. they have varied chain lengths. Thus, the molecular masses of the individual macromolecules in a particular sample of the polymer are different. Hence, an average value of the molecular mass is taken. There are two kinds of average molecular masses of polymers.

    
1. Number-average molecular mass  2454_polymers1.png 
    
2. Mass-average molecular mass  2192_Polymers2.png 

The two types of molecular masses are defined and calculated as follows:
    
1. Number-average molecular mass

When the total mass of all the molecules of a sample is divided by the total number of molecules, the result obtained is called the number-average molecular mass. For example, suppose in a particular sample

N1 molecules have molecular mass M1 each.

N2 molecules have molecular mass M2 each.

N3 molecules have molecular mass M3 each and so on. Then, we have

Total mass of all the N1 molecules = N1M1.

Total mass of all the N2 molecules = N2M2.

Total mass of all the N3 molecules = N3M3 and so on.

 Total mass of all the molecules = N1M1 + N2M2 + N3M3 + .....

= ΣNiMi

Total number of all the molecules = N1 + N2 + N3 + ....

= ΣNi

Hence the number-average molecular mass will be given by
732_Polymers3.png 


1827_polymers1.png is generally determined by osmotic pressure measurement.
    
2. Mass-Average molecular mass

When the total mass of groups of molecules having different molecular masses are multiplied with their respective molecular masses, the products are added and the sum is divided by the total mass of all the molecules, the result obtained is called the mass-average molecular mass. Supposing, as before that N1N2N3, etc, molecules have molecular mass M1M2M3 etc. correspondingly.

Total mass of N1 molecules = N1M1.

Total mass of N2 molecules = N2M2.

Total mass of N3 molecules = N3M3 and so on.

The products with their respective molecular masses will be (N1M1 × M1)(N2M2 × M2)(N3M3 × M3), etc. i.e. N1M12N2M22N3M32, etc.

Sum of the products = N1M12 + N2M22 + N3M32 + ......

= ΣNiMi2

Hence the mass-average molecular mass is given by
879_Polymers4.png 


2192_Polymers2.png is generally determined by technique like ultra centrifugation of sedimentation.

 

 

 

 

 

 

 

   Related Questions in Chemistry

  • Q : Macromolecules what are condensation

    what are condensation polymerization give in with 2 examples

  • Q : Thermodynamics 1 Lab Report I already

    I already did Materials and Methods section. I uploaded it with the instructions. Also, make sure to see Concept Questions and Thinking Ahead in the instructions that I uploaded. deadline is tomorow at 8 am

  • Q : Decinormal concentration of Sulfuric

    Give me answer of this question. The volume of water to be added to 100cm3 of 0.5 N N H2SO4 to get decinormal concentration is : (a) 400 cm3 (b) 500cm3 (c) 450cm3 (d)100cm3

  • Q : Various cons of eating the organic foods

    Describe the various cons of eating the organic foods? Briefly illustrate it.

  • Q : Mole fraction of benzene Choose the

    Choose the right answer from following. In a solution of 8.7g benzene C6H6 and 46.0 gm toluene ,(C6, H5, CH3) the mole fraction of benzene in this solution is: (a)1/6 (b)1/5 (c)1/2 (d)1/3

  • Q : Decanormal and decinormal solution

    Provide solution of this question.10N/and 1/10N solution is called: (a) Decinormal and decanormal solution (b) Normal and decinormal solution (c) Normal and decanormal solution (d) Decanormal and decinormal solution

  • Q : What do you mean by the term alum What

    What do you mean by the term alum? Also illustrate its uses?

  • Q : Illustrate the Lewis Dot Structure

    Illustrate the Lewis Dot Structure for the CH4O.

  • Q : What are different mechanisms for

    Nucleophilic substitution reactions in halides containing  - X bond may take place through either of the two different mechanisms,S<

  • Q : Problem on convection coefficient An

    An experiment to determine the convection coefficient associated with airflow over the surface of a thick stainless steel casting involves insertion of thermocouples in the casting at distances of 10 mm and 20 mm from the surface.  When the experiment was perform