--%>

Explain the mechanism of Enzyme Reactions.

A mechanism for enzyme-catalyzed reactions that leads to the typical rate equation for these reactions can be described.

A variety of rate equations are required to portray the rates of enzymes catalyzed reagents and physical conditions that are encountered. The rate equation of however, is a guide to many of these variations, and the mechanisms of this section, often called the Michaelis-Menten mechanism, is likewise a base for other variations.

The mechanism that accounts for the rate equation is similar to those dealt in with.

With S representing substrate, E the enzyme, and E. S and enzyme substrate complex, the mechanism is presumed to be adequately represented by 

E + S 376_Enzyme reactions.png E. S

E. S 376_Enzyme reactions.png E + products

The steady state assumption, which, however, is not always clearly applicable in these reactions, leads to

k1[E][S] = k-1[E. S] + k2[E. S]

And [E. S] = k1/k-1 + k2 [E][S]


To bring these expressions to a form that can be compared with the empirical rate equation, we must recognize that only [Etot] = [E] + [E. S], and not [E], is generally known. Often, in fact, only a quantity proportional to [Etot], and not even values of [Etot], is available.

Replacement of [E] in equation by [E] = [Etot] - [E. S] leads to

[E. S] = k1[Etot][S]/(k-1 + k2) + k1[S]

Now this expression for the intermediate E. S can be inserted into the expression for the rate of the net reaction. This rate can be based on the formation of products in the second mechanism step. We have

-d[S]/dt = R = k2[E. S] = k1k2[Etot][S]/k-1 + k2 + k1[S]

= k2[Etot][S]/k-1 + k2)/k1 + [S]

It is customary for the term (k-1 + k2)/k1 to be obtained by the new symbol KM, that is,

KM = k-1 + k2/k1 to give the rate equation result of this mechanism as

R = k2[Etot][S]/KM + [S]


We have come at this stage to the form of the empirical rate equation obtained, we are now in a position to intercept the values of the parameters KM and k2[Etotin terms of their roles in the roles in the steps of the mechanism.

Reference to equation shows that, as the reaction is proceeding

[E][S]/[E. S] = KM

Thus KM is related to species concentrations, as is the dissociation equilibrium constant for the species [E. S]. the value of KM, however, is given by (k...1 + k2)/k1, and this equal to the value of the dissociation constant for [E. S] only to the extent that k2 is small and can be neglected compared with k...1. Thus when the breakup of the E. S complex to form original E and S species dominates the process whereby the complex forms products, the value of KM approaches the dissociation constant for the E. S complex.

What, now, is the significance of the term k2[Etot]? One first notes that the rate of the overall reaction is

R = k2[E. S]

It follows that k2[Etot] is the rate that the reaction would have if all the enzyme were in the form of the enzyme-substrate complex. Thus k2[Etot] is the maximum rate for a given value of [Etot]. The turnover rate of an enzyme in a particular enzyme-catalyzed reaction is the rate per mole of enzyme, i.e. the turnover rate is equal to the value of k2, and this can be calculated fromk2[Etot] if the total enzyme concentration is known.

   Related Questions in Chemistry

  • Q : Thermodynamics 1 Lab Report I already

    I already did Materials and Methods section. I uploaded it with the instructions. Also, make sure to see Concept Questions and Thinking Ahead in the instructions that I uploaded. deadline is tomorow at 8 am here is the link to download all instructions because I couldn't attach all of t

  • Q : Ionic radius of chloride ion The edge

    The edge length of the unit cell of Nacl crystal lattice is 552 pm. If ionic radius of sodium ion is 95. What is the ionic radius of chloride ion:(a) 190 pm  (b) 368 pm  (c) 181 pm  (d) 276 pm     <

  • Q : Relative lowering in vapour pressure of

    Give me answer of this question. "Relative lowering in vapour pressure of solution containing non-volatile solute is directly proportional to mole fraction of solute". Above statement is: (a) Henry law (b) Dulong and Petit law (c) Raoult's law (d) Le-Chatelier's pri

  • Q : Molarity what is the molarity of the

    what is the molarity of the solution prepared by dissolving 75.5 g of pure KOH in 540 ml of solution

  • Q : Oxoacids of halogens Why oxidising

    Why oxidising character of oxoacids of halogens decreases as oxidation number increases?

  • Q : Problem associated to vapour pressure

    Provide solution of this question. 60 gm of Urea (Mol. wt 60) was dissolved in 9.9 moles, of water. If the vapour pressure of pure water is P0 , the vapour pressure of solution is:(a) 0.10P0 (b) 1.10P0 (c) 0.90P0 (d) 0.99P0

  • Q : Describe chemical properties of amines.

    Like ammonia, primary, secondary and tertiary amines have a single pair of electrons on N atom. Hence chemical behavior of amines is similar to ammonia. Amines are basic in nature, and in most of the reactions they act as nucleophiles.      1. Reaction wi

  • Q : Problem on relative humidity Relative

    Relative humidity is the ratio of the partial pressure of water in air to the partial pressure of water in air saturated with water at the same temperature, stated as a percentage: Relative  =

    Q : Problem on equilibrium constant Ethanol

    Ethanol is manufactured from carbon monoxide and hydrogen at 600 K and 20 bars according to the reaction2 C0(g) + 4 H2(g) ↔ C2H5OH(g) + H2O (g)The feed stream contains 60 mol% H2, 20 m

  • Q : Molar mass lculwhat is the equation for

    lculwhat is the equation for caating molar mass of non volatile solute