--%>

Explain the catalyst definition and process with examples.

Catalyst is a substance which accelerates the rate of a chemical reaction without undergoing any change in its chemical composition or mass during the reaction. The phenomenon of increasing the rate of a reaction with the help of a catalyst is known as catalysis.

For example, decomposition of potassium chlorate to give dioxygen occurs at high temperature in the range of 653 - 873 K
                                                      
2KClO3  2458_enzyme catalysis3.png  2KCl + 3O2

However, if a small amount of MnO2 is added to KClO3, its decomposition becomes faster and occurs at lower temperature range 473 - 633 K. the mass and chemical composition of MnO2 remains unaltered at the end of reaction. Thus, MnO2 acts as catalyst for the decomposition of KClO3.

Catalytic action

Since the catalysts are not consumed during the reaction, therefore, only a small amount of catalyst is sufficient to catalyse the reaction. According to modern views, a catalyst speeds up the reaction by providing an alternate path of lower activation energy to the reactants. The catalyst lowers the activation energy by interacting with the reactants leading to the formation of some intermediate complex of lower potential energy. In due course, the intermediate complex decomposes to give the products and also the catalyst.

Promotors and poisons

Promotors are the substances which enhance the activity of catalysts. For example, in the Hber's process for the manufacture of ammonia, molybdenum (Mo) is used as promoter which increases the activity of iron (Fe) used as catalyst
                                              
2218_catalysis.png  

Poisons are the substances which decrease the activity of catalyst. For example, during the Rosemnud's reaction involving the hydrogenation of acetyl chloride, Pd is used as catalyst while BaSO4/quinoline acts as poison. This activity of catalyst is purposely decreased to check the reduction of RCOCl to RCHO stage. If this is not done the desired compound RCHO will further undergo reduction to form alcohol RCH2OH.
                                           
1558_catalysis1.png

   Related Questions in Chemistry

  • Q : Sedimentation and Velocity The first

    The first method begins with a well defined layer, or boundary, of solution near the center of rotation and tracks the movement of this layer to the outside of the cell as a function of time. Such a method is termed a sedimentary velocity experiment. A

  • Q : Molar conductance what is the molar

    what is the molar conductance of chloropentaamminecobalt(III) chloride?

  • Q : Describe the function of the

    Briefly describe the function of the monosaccharide?

  • Q : Soluation of Ideal Gas Law problems

    Explain the method, how do you solve Ideal Gas Law problems?

  • Q : Coordination number of a cation The

    The coordination number of a cation engaging a tetrahedral hole is: (a) 6  (b) 8  (c) 12  (d) 4 Answer: (d) The co-ordination number of a cation occupying a tetrahedral hole is 4.

  • Q : Finding Normality Can someone please

    Can someone please help me in getting through this problem. Concentrated H2SO4 has a density of 1.98 gm/ml and is 98% H2SO4 by weight. The normality is: (a) 2 N  (b) 19.8 N  (c) 39.6 N  (d) 98

  • Q : Kinds of insulators Describe all the

    Describe all the kinds of insulators which are present?

  • Q : Molarity of HCl solution 20 ml of HCL

    20 ml of HCL solution needs 19.85 ml of 0.01M NaOH solution for complete neutralization. Morality of the HCL solution is:  (i) 0.0099 (ii) 0.099 (iii) 0.99 (iv) 9.9 Choose the right answer from above.

  • Q : Modern periodic table and Mendeleevs

    Differentiate between the modern periodic table and Mendeleevs table?

  • Q : Concentration of an aqueous solution

    Give me answer of this question. The concentration of an aqueous solution of 0.01M CH3OH solution is very nearly equal to which of the following : (a) 0.01%CH3OH (b) 0.1%CH3OH (c) xCH3OH= 0.01 (d) 0.99MH2O (