--%>

Explain Service times

Service times:

A) In most cases, servicing a request takes a “short” time, but in a few occasions requests take much longer.

B) The probability of completing a service request by time t, is independent of how much time has already passed. We should not expect this property to hold in situations where the server must perform the same fixed sequence of operations for each customer, because then a long elapsed service should imply that probably little remains to be done. However, in the type of situation where the required service operations differ among customers, the property may be quite realistic. For in this case, if considerable service has already elapsed for a customer, the only implication may be that this particular customer requires more extensive service than most

C) Corollary:

  • The number of service completions in an interval is characterized by a Poisson distribution.

 

   Related Questions in Basic Statistics

  • Q : Safety and Liveness in Model Checking

    Safety and Liveness in Model Checking Approach; •? Safety: Nothing bad happens •? Liveness: Something good happens •? Model checking is especially good at verifying safety and liveness properties    –?Concurrency i

  • Q : FIN512 Entrepreneurial Finance Chapter

      Chapter 6: Discussion Question: #4 p. 223  It is usually easier to forecast sales for a seasoned firm contrast to an early-stage venture because an early-stage venture has limited access to bank credit lines, sho

  • Q : Hw An experiment is conducted in which

    An experiment is conducted in which 60 participants each fill out a personality test, but not according to the way they see themselves. Instead, 20 are randomly assigned to fill it out according to the way they think a parent sees them (i.e. how a parent would fill it out to describe the participant

  • Q : Compute two sample standard deviations

    Consider the following data for two independent random samples taken from two normal populations. Sample 1 14 26 20 16 14 18 Sample 2 18 16 8 12 16 14 a) Com

  • Q : Derived quantities in Queuing system

    Derived quantities in Queuing system: • λ = A / T, Arrival rate • X = C / T, Throughput or completion rate • ρ =U= B / T, Utilization &bu

  • Q : Model Checking Approach Model Checking

    Model Checking Approach: • Specify program model and exhaustively evaluate that model against a speci?cation        –Check that properties hold   

  • Q : State the hypotheses At Western

    At Western University the historical mean of scholarship examination score for freshman applications is 900. Population standard deviation is assumed to be known as 180. Each year, the assistant dean uses a sample of applications to determine whether the mean ex

  • Q : MANOVA and Reflection Activity

    Activity 10:   MANOVA and Reflection   4Comparison of Multiple Outcome Variables This activity introduces you to a very common technique - MANOVA. MANOVA is simply an extension of an ANOV

  • Q : Probability how can i calculate

    how can i calculate cumulative probabilities of survival

  • Q : What is Forced Flow Law Forced Flow Law

    Forced Flow Law: • The forced flow law captures the relationship between the various components in the system. It states that the throughputs or flows, in all parts of a system must be proportional t