--%>

Explain Second Order Rate Equations.

Integration of the second order rate equations also produces convenient expressions for dealing with concentration time results.

A reaction is classified as second order if the rate of the reaction is proportional to the square of the concentration of one of the reagents or to the product of the concentrations of two species of the reagents. The second situation leads to the same equations as the first if the two reactants are used up at the same rate and if their initial concentrations are equal.

Rate = kc2. For these situations, the rate equation is

-dc/dt = kc2, where c is the concentration of the single reagent or one of the two reagents. Again the kinetic data are usually compared with the integrated form of the equation. One has

- 966_second order rate equation.png dc/c2 = k 283_second order rate equation1.png dt

And

1/c - 1/c0 = kt

A reaction of the types considered so far is therefore second order if a plot of 1/c versus t gives a straight line. The slope of the straight line is equal to the rate constant. Equation shows, this constant involves the units of concentrations, differing in this respect from the first order rate constant that involves only the units of time. Furthermore, the time for the concentration to drop to half its initial value is deduced from equation to be

t1/2 = 1/kc
0

The half life therefore depends on the initial concentration and is not a convenient way of expressing the rate constant of second order reactions.

Example: use of second order half life expression to verify that the rates used which were obtained for periods of reaction up to about 30 min, were indeed "initial rates".

Solution: 
although the concentrations of the two reactants, iodine ions and peroxydisulfate ions, reported are somewhat different we can use a representative value of 0.01 mol L-1. Then with k = 0.36 mol-1 L min-1, gives 

t1/2 = 1/(0.36 mol-1 L min-1) (0.01 mol L-1)

= 300 min

About half the reactants would be used up in 300 min. since the reaction was studied only in times up to about 10 min, the initial concentration could not have changed appreciably. The method of initial rates was applicable.

Rate = kcA cB: instead of working with the concentration of the reacting species, as was done with previous equation, it is more convenient to develop the rate equation by introducing a term for the amount of reaction that has occurred at time t. the overall reaction might, for example, be of the form

A + B 1187_First order reactions1.png products

If it is inconvenient to arrange to have the initial concentrations of A and B equal the analysis that led to equation cannot be used, but the kinetic data can be treated in terms of the following quantities:

a = initial concentration of A

b = initial concentration of B

X = decrease in A or B at time t = amount of product at time t

a - x = concentration of A at time t

b - x = concentration of B at time t

The differential second order rate equation would then be 

dx/dt = k[A][B] = k(a - x)(b - x)

The integration can be performed by using partial fractions. Thus

dx/(a - x)(b - x) = k dt


leads to the integral 

1/a - b 353_second order rate equation2.png (- dx/a - x + dx/b - x) = k 283_second order rate equation1.png dt


On integration this gives

1/a - b [In (a - x) - In (b - x)]0x = kt

Insertion of the limits and rearrangement give, finally,

1/a - b In b(a - x)/a(b - x) = kt

   Related Questions in Chemistry

  • Q : Problem based on lowering in vapour

    Help me to solve this problem. An aqueous solution of glucose was prepared by dissolving 18 g of glucose in 90 g of water. The relative lowering in vapour pressure is: (a) 0.02 (b)1 (c) 20 (d)180

  • Q : Problem on molality Select the right

    Select the right answer of the question. Calculate the molality of 1 litre solution of 93% H2SO4 (weight/volume). The density of the solution is 1.84 g /ml : (a) 10.43 (b) 20.36 (c) 12.05 (d) 14.05

  • Q : Vapour pressure of water Give me answer

    Give me answer of this question. 5cm3 of acetone is added to 100cm3 of water, the vapour pressure of water over the solution: (a) It will be equal to the vapour pressure of pure water (b) It will be less than the vapour pressure of pure water

  • Q : HCl is an acid or a base Illustrate is

    Illustrate is HCl an acid or a base ?

  • Q : Describe various systems for

    Common system According to this system, the individual members are named according to alkyl groups att

  • Q : Acid value definition The acid value

    The acid value definition is the number milligrams of KOH needed to neutralize the acid present in one gram oil and fats however why not employ NaOH for the neutralization?

  • Q : Moles of HCl present in .70 L of a .33

    Detail the moles of HCl which are present in .70 L of a .33 M HCl solution?

  • Q : Describe Point Groups. For any

    For any symmetric object there is a set of symmetry operations that, together, constitute a mathematical group, called a point group.It is clear from the examples that most molecules have several elements of symmetry. The H2O

  • Q : Tetrahedral holes In zinc blende

    In zinc blende structure, zinc atom fill up:(a) All octahedral holes  (b) All tetrahedral holes  (c) Half number of octahedral holes  (d) Half number of tetrahedral holesAnswer: (d) In zinc blende (ZnS

  • Q : What are methods of phenol preparation

    Phenol was initially obtained by fractional distillation of coal