--%>

Explain Rydberg formula

Rydberg formula (Rydberg): The formula that explains all of the characteristics of hydrogen's spectrum, comprising the Balmer, Paschen, Lyman, Brackett, and Pfund sequence.

For the transition between an electron in the orbital m to one in orbital n or the reverse, the wavelength lambda included is specified by:

1/lambda = R (1/m2 - 1/n2)

   Related Questions in Physics

  • Q : State Kohlrauschs law Kohlrausch's law

    Kohlrausch's law (F. Kohlrausch): When a salt is dissolved in water, the conductivity of the solution is the addition of two values -- one depending on the positive ions and the other on negative ions.

  • Q : Define Kirkwood gaps Kirkwood gaps

    Kirkwood gaps (Kirkwood): The gaps in the asteroid belt, caused by the resonance effects from Jupiter. Similar gaps are also exists in Saturn's rings, due to the resonance effects of the shepherd moons.

  • Q : Describe the term Specular Reflection

    Describe briefly the term Specular Reflection?

  • Q : Define Weiss constant Weiss constant :

    Weiss constant: The characteristic constant dependent on the substance, employed in computing the susceptibility of the paramagnetic materials.

  • Q : Explain Schroedingers cat

    Schroedinger's cat (E. Schroedinger; 1935): A thought experiment designed to exemplify the counterintuitive and strange ideas of reality that come all along with the quantum mechanics. A cat is sealed within a clos

  • Q : Define Le Chateliers principle Le

    Le Chatelier's principle (H. Le Chatelier; 1888): When a system is in equilibrium, then any modification imposed on the system tends to shift the equilibrium state to decrease the consequence of that applied change.

  • Q : Define Spin-orbit effect Spin-orbit

    Spin-orbit effect: The effect that causes atomic energy levels to be split since electrons contain intrinsic angular momentum (that is spin) in summation to their extrinsic orbital angular momentum.

  • Q : What is Wave-particle duality

    Wave-particle duality: The principle of quantum mechanics that entails that light (and, certainly, all other subatomic particles) at times act similar to a wave, and sometime act similar to a particle, based on the experiment you are executing. For ex

  • Q : Explain Gauss law for magnetic fields

    Gauss' law for magnetic fields (K.F. Gauss): The magnetic flux via a closed surface is zero (0); no magnetic charges present; in its differential form, div B = 0

  • Q : What do you mean by the term positron

    What do you mean by the term positron? Explain in short.