--%>

Relationship between free energy and pressure

The free energy of a gas depends on the pressure that confines the gas.


The standard free energies of formation, like those allow predictions to be made of the possibility of a reaction at 25°C for each reagent at 1-bar pressure. For these free-energy data to be of more general use, a means must be available for calculating free energies at other pressures and temperatures.

To start, we form a complete and detailed description for changes in free energy. From the defining equations G = H - TS and H = U + PV we obtain 

dG = dU + P dV + V dP - T dS - S dT

This expression has redundancies in it and can be simplified. The state of the system is determined when the temperature and the pressure, or one of these and one of the properties of the system, are fixed. Changes in any two of these variables determined the change in the state of the system. It follows that the change in any property of the system can be expressed in terms of changes in any two of these variables.

First, we deal with an "ordinary" process in which no mechanical energy other than P dV energy is evolved. In this case P dV = dUmech. Second, we imagine that the states of the system that we are considering can be connected by a reversible process. For such a process dS + dStherm = dS + dUtherm/T = 0, or T dS = -dUtherm. With these stipulation becomes,

dG = dU + dUmech + V dP + dUtherm - S dT

the first law sets the combination of the three U terms to zero, and we have

dG = V dP - S dT

we have arrived at an expression for changes in the free energy in the terms of changes in just two state-determining variables.

Now think of the free energy G as being a property of the system and, therefore, dependent on the state of the system. If this state is specified by  the temperature and the pressure, we can write the general total differential

dG = (∂G/∂P)T dp + (∂G/∂T)P dT

Comparison with equation lets us make the identifications

(∂G/∂P)T = V


And 

(∂G/∂P)P = -S


These results show how the free energy property changes when, separately, the pressure or the temperature is changed.

Notice that we arrived at these results by considering a special type of process. But since G is a property of the system, it will change by a certain amount when the pressure or temperature is changed, for any type of process.

We deal with the dependence of free energy on temperature and now we follow up on the expression obtained for the pressure dependence.

Liquids and solids have small molar volumes compared with gases. For many purposes the pressure dependence of the free energy of liquids and solids can be neglected.

For gases the dependence of free energy on pressure is appreciable and important. For an ideal gas, P and V are related by the ideal gas law, and the integration can be performed to give the free-energy change when the pressure is changed from P1 to P2 at constant temperature. Thus

G2 - G= ∫V dP = nRT ∫P2P1 dP/P = nRT In P2/P1

Of particular interest is the extent to which the free energy changes from its standard state value when the pressure changes from 1 bar. If state 1 is the standard state, then

P1 = 1 bar and G1 = G° 

P2 = P bar and G2 = G

With this notation for states 1 and 2 it can be we written for 1 mol as

G - G° = RT In P/1 bar

Or G = G° + RT In P [T const, P in bar, and 1 mol of an ideal gas]    

   Related Questions in Chemistry

  • Q : Molecular basis of third law. The

    The molecular, or statistical, basis of the third law can be seen by investigating S = k in W.The molecular deductions of the preceding sections have led to the same conclusions as that stated in the third law of thermodynamics, namely, that a value can be

  • Q : Problem based on molarity Select the

    Select the right answer of the question. If 18 gm of glucose (C6H12O6) is present in 1000 gm of an aqueous solution of glucose, it is said to be: (a)1 molal (b)1.1 molal (c)0.5 molal (d)0.1 molal

  • Q : Molecular Diameters The excluded volume

    The excluded volume b, introduced by vander Wall's as an empirical correction term, can be related to the size gas molecules. To do so, we assume the excluded volume is the result of the pairwise coming together of molecules. This assumption is justified when b values

  • Q : Problem on vapour pressure Choose the

    Choose the right answer from following. If P and P are the vapour pressure of a solvent and its solution respectively N1 and N2 and are the mole fractions of the solvent and solute respectively, then correct relation is: (a) P= PoN1 (b) P= Po N2 (c)P0= N2 (d)

  • Q : Kinds of insulators Describe all the

    Describe all the kinds of insulators which are present?

  • Q : Describe chemical properties of amines.

    Like ammonia, primary, secondary and tertiary amines have a single pair of electrons on N atom. Hence chemical behavior of amines is similar to ammonia. Amines are basic in nature, and in most of the reactions they act as nucleophiles.      1. Reaction wi

  • Q : Illustrations of the reversible reaction

    What are the various illustrations of the reversible reaction? Explain briefly?

  • Q : Theory of three dimensional motion

    Partition function; that the translational energy of 1 mol of molecules is 3/2 RT will come as no surprise. But the calculation of this result further illustrates the use of quantized states and the partition function to obtain macroscopic properties. The partition fu

  • Q : Problem on decinormal Select the right

    Select the right answer of the question. How much water is required to dilute 10 ml of 10 N hydrochloric acid to make it exactly decinormal (0.1 N): (a) 990 ml (b) 1000 ml (c) 1010 ml (d) 100 ml

  • Q : Effect of addition of mercuric iodide

    Give me answer of this question. When mercuric iodide is added to the aqueous solution of potassium iodide, the:(a) Freezing point is raised (b) Freezing point is lowered (c) Freezing point does not change (d) Boiling point does not change