--%>

Relationship between free energy and pressure

The free energy of a gas depends on the pressure that confines the gas.


The standard free energies of formation, like those allow predictions to be made of the possibility of a reaction at 25°C for each reagent at 1-bar pressure. For these free-energy data to be of more general use, a means must be available for calculating free energies at other pressures and temperatures.

To start, we form a complete and detailed description for changes in free energy. From the defining equations G = H - TS and H = U + PV we obtain 

dG = dU + P dV + V dP - T dS - S dT

This expression has redundancies in it and can be simplified. The state of the system is determined when the temperature and the pressure, or one of these and one of the properties of the system, are fixed. Changes in any two of these variables determined the change in the state of the system. It follows that the change in any property of the system can be expressed in terms of changes in any two of these variables.

First, we deal with an "ordinary" process in which no mechanical energy other than P dV energy is evolved. In this case P dV = dUmech. Second, we imagine that the states of the system that we are considering can be connected by a reversible process. For such a process dS + dStherm = dS + dUtherm/T = 0, or T dS = -dUtherm. With these stipulation becomes,

dG = dU + dUmech + V dP + dUtherm - S dT

the first law sets the combination of the three U terms to zero, and we have

dG = V dP - S dT

we have arrived at an expression for changes in the free energy in the terms of changes in just two state-determining variables.

Now think of the free energy G as being a property of the system and, therefore, dependent on the state of the system. If this state is specified by  the temperature and the pressure, we can write the general total differential

dG = (∂G/∂P)T dp + (∂G/∂T)P dT

Comparison with equation lets us make the identifications

(∂G/∂P)T = V


And 

(∂G/∂P)P = -S


These results show how the free energy property changes when, separately, the pressure or the temperature is changed.

Notice that we arrived at these results by considering a special type of process. But since G is a property of the system, it will change by a certain amount when the pressure or temperature is changed, for any type of process.

We deal with the dependence of free energy on temperature and now we follow up on the expression obtained for the pressure dependence.

Liquids and solids have small molar volumes compared with gases. For many purposes the pressure dependence of the free energy of liquids and solids can be neglected.

For gases the dependence of free energy on pressure is appreciable and important. For an ideal gas, P and V are related by the ideal gas law, and the integration can be performed to give the free-energy change when the pressure is changed from P1 to P2 at constant temperature. Thus

G2 - G= ∫V dP = nRT ∫P2P1 dP/P = nRT In P2/P1

Of particular interest is the extent to which the free energy changes from its standard state value when the pressure changes from 1 bar. If state 1 is the standard state, then

P1 = 1 bar and G1 = G° 

P2 = P bar and G2 = G

With this notation for states 1 and 2 it can be we written for 1 mol as

G - G° = RT In P/1 bar

Or G = G° + RT In P [T const, P in bar, and 1 mol of an ideal gas]    

   Related Questions in Chemistry

  • Q : What do you mean by the term dipole

    What do you mean by the term dipole moment? Briefly describe it.

  • Q : Molar solution of sulphuric acid Choose

    Choose the right answer from following. The molar solution of sulphuric acid is equal to: (a) N solution (b) 2Nsolution (c) N/2solution (d) 3Nsolution

  • Q : Question based on maximum vapour

    Provide solution of this question. Which has maximum vapour pressure: (a) HI (b) HBr (c) HCl (d) HF

  • Q : What is synthetic rubber and how it

    To meet human needs, scientists have started preparing synthetic rubbers. Besides having similar properties as natural rubbers they are tougher, more flexible and more durable than natural rubber. They are capable of getting stretched to twice its length. Though, it reverts to its original shape

  • Q : Changes in matter law of chemical

    changes in matter law of chemical combination

  • Q : Preparation of ammonium sulphate Select

    Select the right answer of the question. Essential quantity of ammonium sulphate taken for preparation of 1 molar solution in 2 litres is: (a)132gm (b)264gm (c) 198gm (d) 212gm

  • Q : Why acetic has less conductivity than

    Illustrate the reason, why acetic has less conductivity than Hcl?

  • Q : Molecular Symmetry Types The number of

    The number of molecular orbitals and molecular motions of each symmetry type can be deduced. Let us continue to use the C2v point group and the H2O molecule to illustrate how the procedure develop

  • Q : Explain the process of coagulation of

    Presence of small concentrations of appropriate electrolyte is necessary to stabilize the colloidal solutions. However, if the electrolytes are present in higher concentration, then the ions of the electrolyte neutralize the charge on the colloidal particles may unite

  • Q : Dipole moment of chloro-octane Describe

    Describe the dipole moment of chloro-octane in brief?