--%>

Explain quantum physics

why quantum physics is studied? give me some of topics

   Related Questions in Physics

  • Q : What do you mean by the term positron

    What do you mean by the term positron? Explain in short.

  • Q : What do you mean by the term crest What

    What do you mean by the term crest? Briefly illustrate it.

  • Q : Define Singularity Singularity : The

    Singularity: The center of a black hole, where the curvature of space-time is maximal. At singularity, the gravitational tides deviate; no solid object can yet theoretically survive beating the singularity. Though singularities usually predict inconsi

  • Q : Problem on beam For the beam

    For the beam illustrated below, we require to determine: (A) the support reactions

  • Q : Define Kelvin or basic SI unit of

    Define Kelvin or basic SI unit of thermodynamic temperature: Kelvin: K (after Lord Kelvin, 1824-1907): The basic SI unit of thermodynamic temperature stated as 1/273.16 of the thermodynamic temperature of triple point of the water.

  • Q : Define Tesla or SI unit of the magnetic

    Tesla: T (after N. Tesla, 1870-1943): The derived SI unit of the magnetic flux density stated as the magnetic flux density of a magnetic flux of 1 Wb via an area of 1 m2; it therefore has units of Wb/m2.

  • Q : Weights in pounds of the liquid gallons

    Write down the weights in pounds of the liquid gallons? Briefly describe it.

  • Q : Explain Stefan-Boltzmann law

    Stefan-Boltzmann law (Stefan, L. Boltzmann): The radiated power P (that is the rate of emission of electromagnetic energy) of a hot body is proportional to the radiating surface area, A, and the 4th power of the thermodynamic temperature, T. The const

  • Q : Calculate the concentration A

    A dual-wavelength spectrometer uses 780 nm and 830 nm. The molar extinction coefficients for oxy-hemoglobin (HbO2) and deoxy-hemoglobin (Hb) at these two wavelengths are: e_HbO2_780nm = 710 cm-1M-1, e_Hb_780nm = 1075 cm

  • Q : Explain Michelson-Morley experiment

    Michelson-Morley experiment (A.A. Michelson, E.W. Morley; 1887): Probably the most famous null-experiment of all time, designed to confirm the existence of the proposed "lumeniferous aether" via which light waves were considered to pr