--%>

Explain Planck radiation law

Planck radiation law: The law which explained blackbody radiation better than its precursor, therefore resolving the ultraviolet catastrophe. This is based on the supposition that electromagnetic radiation is quantized.

For a blackbody at thermodynamic temperature T, the radiance R over a range of frequencies between the nu and nu + dnu is specified by:

R = 2 pi h nu3/[c3 [exp (h nu/k T) - 1]].

   Related Questions in Physics

  • Q : Features or characteristics of dead

    Write a short note on the features or characteristics of dead stars?

  • Q : Define Planck equation Planck equation:

    Planck equation: The quantum mechanical equation associating to the energy of a photon E to its frequency nu: E = h nu.

  • Q : Balanced field takeoff Describe the

    Describe the process of balanced field takeoff in brief?

  • Q : Define Pseudoforce Pseudoforce : The

    Pseudoforce: The "force" that arises as an observer is plainly treating an accelerating frame as an inertial one.

  • Q : Explain Tachyon paradox Tachyon

    Tachyon paradox: The argument explaining that tachyons (should they subsist, of course) can’t carry an electric charge. For an imaginary-massed particle travelling faster than c, less energy the tachyon has, the faster it travels, till at zero e

  • Q : Define Dirac constant Dirac constant :

    Dirac constant: Planck constant, modified form; hbar Sometimes more suitable form of the Planck constant, stated as: hbar = h/(2 pi)

  • Q : What do you mean by the term crest What

    What do you mean by the term crest? Briefly illustrate it.

  • Q : Explain Davisson-Germer experiment

    Davisson-Germer experiment (C.J. Davisson, L.H. Germer; 1927): The experiment which conclusively proved the wave nature of electrons; diffraction patterns were examined by an electron beam penetrating into the nickel target.

  • Q : What is Ultraviolet catastrophe

    Ultraviolet catastrophe: It is the shortcoming of Rayleigh-Jeans formula that attempted to explain the radiance of a blackbody at different frequencies of the electromagnetic spectrum. This was clearly wrong since as the frequency rose, the radiance r

  • Q : Becquerel Becquerel : Bq (after A.H.

    Becquerel: Bq (after A.H. Becquerel, 1852-1908) - The derived SI unit of the activity stated as the activity of radionuclide decay at a rate, on the average, of one nuclear transition every 1 s; it hence has units of s-1.