--%>

Explain Photoelectric effect

Photoelectric effect: An effect described by A. Einstein that demonstrates that light seems to be made up of particles, or photons. The light can excite electrons (termed as photoelectrons in this context) to be ejected from the metal. Light with a frequency below with a certain threshold, at any intensity, will not origin any photoelectrons to be emitted from metal. Above the frequency, photoelectrons are emitted in proportion to the intensity of the incident light.

The reason is that a photon comprises energy in proportion to its wavelength, and constant of proportionality is the Planck’s constant. Below a certain frequency -- and therefore below a certain energy -- the incident photons do not contain enough energy to knock the photoelectrons out of the metal. Over that threshold energy, termed as the work function, the photons will bang the photoelectrons out of the metal, in proportion to the number of photons (that is the intensity of the light). In higher energies and frequencies, the photoelectrons ejected get a kinetic energy equivalent to the difference among the photon's energy and the work function.

   Related Questions in Physics

  • Q : Explain Daltons law of partial pressures

    Dalton's law of partial pressures (J. Dalton): The net pressure of a mixture of ideal gases is equivalent to the sum of the partial pressures of its components; which is the sum of the pressures which each component would exert when it were present al

  • Q : Define Doppler Effect Doppler Effect

    Doppler Effect (C.J. Doppler): The waves emitted by a moving object as received by an observer will be blue shifted (compressed) when approaching, redshifted (that is, elongated) if receding. This takes place both in sound and also el

  • Q : What do you mean by the term geocentric

    What do you mean by the term geocentric? Briefly describe it.

  • Q : Define Planck equation Planck equation:

    Planck equation: The quantum mechanical equation associating to the energy of a photon E to its frequency nu: E = h nu.

  • Q : Define Trojan points Trojan points : L4

    Trojan points: L4 and L5 are the two dynamically stable Lagrange points (that is, beneath certain conditions).

  • Q : What is Kerr effect Kerr effect (J.

    Kerr effect (J. Kerr; 1875): The capability of certain substances to refract light waves in a different way whose vibrations are in dissimilar directions whenever the substance is located in an electric field.

  • Q : Define Sievert or SI unit of dose

    Sievert: Sv: The derived SI unit of dose equivalent, stated as the absorbed dose of the ionizing radiation multiplied by internationally-agreed-upon dimensionless weights, as various kinds of ionizing radiation cause various kinds of damage in the liv

  • Q : Gas encompass density or not Explain in

    Explain in brief that the gas encompass density or not?

  • Q : State Kohlrauschs law Kohlrausch's law

    Kohlrausch's law (F. Kohlrausch): When a salt is dissolved in water, the conductivity of the solution is the addition of two values -- one depending on the positive ions and the other on negative ions.

  • Q : Problem on magnetically coupled pair

    When one coil of a magnetically coupled pair has a current of 5.0A, the resulting fluxes Φ11 and Φ21 are 0.2mWb and 0.4mWb, respectively.  If the turns are N1 = 500 and N2 = 1500, find L1, L2, M and the coeffici