--%>

Explain Photoelectric effect

Photoelectric effect: An effect described by A. Einstein that demonstrates that light seems to be made up of particles, or photons. The light can excite electrons (termed as photoelectrons in this context) to be ejected from the metal. Light with a frequency below with a certain threshold, at any intensity, will not origin any photoelectrons to be emitted from metal. Above the frequency, photoelectrons are emitted in proportion to the intensity of the incident light.

The reason is that a photon comprises energy in proportion to its wavelength, and constant of proportionality is the Planck’s constant. Below a certain frequency -- and therefore below a certain energy -- the incident photons do not contain enough energy to knock the photoelectrons out of the metal. Over that threshold energy, termed as the work function, the photons will bang the photoelectrons out of the metal, in proportion to the number of photons (that is the intensity of the light). In higher energies and frequencies, the photoelectrons ejected get a kinetic energy equivalent to the difference among the photon's energy and the work function.

   Related Questions in Physics

  • Q : Explain the procedure to compute the

    Briefly explain the procedure to compute the tensile strength?

  • Q : What is Bernoulli's equation

    Bernoulli's equation - In an ir-rotational fluid, the sum of static pressure, the weight of the fluid per unit mass times the height and half of the density times the velocity squared is steady all through the fluid 

  • Q : Define Hall Effect Hall Effect:

    Hall Effect: Whenever charged particles flow via a tube that has both an electric field and a magnetic field (that is perpendicular to the electric field) present in it, only assured velocities of the charged particles are favored, and will make it un

  • Q : Explain Stern-Gerlach experiment

    Stern-Gerlach experiment (O. Stern, W. Gerlach; 1922): The experiment which explains the features of spin (that is intrinsic angular momentum) as a different entity apart from the orbital angular momentum.

  • Q : Define Fermats principle Fermat's

    Fermat's principle: principle of least time (P. de Fermat): The principle, put onward by P. de Fermat that explains the path taken by a ray of light among any two points in a system is for all time the path which takes the least time.

  • Q : Define Compton Effect Compton Effect

    Compton Effect (A.H. Compton; 1923): The effect which describes those photons (that is the quantum of electromagnetic radiation) has momentum. The photon fired at a stationary particle, like an electron, will communicate momentum to t

  • Q : Define Hubbles law Hubble's law (E.P.

    Hubble's law (E.P. Hubble; 1925): The relationship discovered between radial velocity and distance. The further away a galaxy is away from is, the quicker it is receding away from us. The constant of proportionality is the Hubble cons

  • Q : Define Watt or SI unit of power Watt: W

    Watt: W (after J. Watt, 1736-1819): The derived SI unit of power, stated as a power of 1 J acting over the period of 1 s; it therefore has the units of J/s.

  • Q : Problem on Orbit cycle Calculate the

    Calculate the hot and cold temperature after 25 orbits. Assume a 100kg spherical spacecraft made of aluminum. Assume that the spacecraft is in an equatorial orbit. How is calculation 1 different for a spacecraft in a 90 degree (polar) orbit?

  • Q : What is baryon decay Baryon decay - The

    Baryon decay -The idea expected by several grand-unified theories, those classes of subatomic particles termed as baryons (of which the nucleons -- neutrons and protons -- are members) are not eventually stable however indeed de