--%>

Explain Photoelectric effect

Photoelectric effect: An effect described by A. Einstein that demonstrates that light seems to be made up of particles, or photons. The light can excite electrons (termed as photoelectrons in this context) to be ejected from the metal. Light with a frequency below with a certain threshold, at any intensity, will not origin any photoelectrons to be emitted from metal. Above the frequency, photoelectrons are emitted in proportion to the intensity of the incident light.

The reason is that a photon comprises energy in proportion to its wavelength, and constant of proportionality is the Planck’s constant. Below a certain frequency -- and therefore below a certain energy -- the incident photons do not contain enough energy to knock the photoelectrons out of the metal. Over that threshold energy, termed as the work function, the photons will bang the photoelectrons out of the metal, in proportion to the number of photons (that is the intensity of the light). In higher energies and frequencies, the photoelectrons ejected get a kinetic energy equivalent to the difference among the photon's energy and the work function.

   Related Questions in Physics

  • Q : Water drain contradict problem Does

    Does water drain contradict clockwise in the northern hemisphere and clockwise in the southern hemi-sphere? Briefly explain it.

  • Q : Explain Tachyon paradox Tachyon

    Tachyon paradox: The argument explaining that tachyons (should they subsist, of course) can’t carry an electric charge. For an imaginary-massed particle travelling faster than c, less energy the tachyon has, the faster it travels, till at zero e

  • Q : Define Kelvin or basic SI unit of

    Define Kelvin or basic SI unit of thermodynamic temperature: Kelvin: K (after Lord Kelvin, 1824-1907): The basic SI unit of thermodynamic temperature stated as 1/273.16 of the thermodynamic temperature of triple point of the water.

  • Q : Define Determinism principle

    Determinism principle: The principle that when one knows the state to an unlimited accuracy of a system at one point in time, one would be capable to predict the state of that system with unlimited accuracy at any other time, past or the future. For i

  • Q : Explain Chronology protection conjecture

    Chronology protection conjecture (S.W. Hawking): The notion that the formation of any closed time like curve will (automatically) involuntarily be destroyed by the quantum fluctuations as soon as it is made. In another words, the quan

  • Q : Explain Twin paradox Twin paradox: One

    Twin paradox: One of the most well-known "paradoxes" in history, predicted by Sir Einstein's special theory of relativity. It takes two twins, born on similar date on Earth. One, Albert, leaves home for a trip about the Universe at very high speeds (v

  • Q : Dynamic strain aging and the strain

    What is the basic difference among the dynamic strain aging and the strain aging?

  • Q : What is Hubble constant Hubble constant

    Hubble constant: H0 (E.P. Hubble; 1925): The constant that determines the relationship among the distance to a galaxy and its velocity of recession due to the growth of the Universe. As the Universe is self-gravitating, it is not trut

  • Q : What is Speed of light Speed of light

    Speed of light (in vacuo): c: The speed at which the electromagnetic radiation spreads in a vacuum; it is stated as 299 792 458 m/s.

  • Q : Bell's inequality Bell's inequality

    Bell's inequality (J.S. Bell; 1964) - The quantum mechanical theorem that explains that if the quantum mechanics were to rely on the hidden variables, it should have non-local properties.