--%>

Explain Photoelectric effect

Photoelectric effect: An effect described by A. Einstein that demonstrates that light seems to be made up of particles, or photons. The light can excite electrons (termed as photoelectrons in this context) to be ejected from the metal. Light with a frequency below with a certain threshold, at any intensity, will not origin any photoelectrons to be emitted from metal. Above the frequency, photoelectrons are emitted in proportion to the intensity of the incident light.

The reason is that a photon comprises energy in proportion to its wavelength, and constant of proportionality is the Planck’s constant. Below a certain frequency -- and therefore below a certain energy -- the incident photons do not contain enough energy to knock the photoelectrons out of the metal. Over that threshold energy, termed as the work function, the photons will bang the photoelectrons out of the metal, in proportion to the number of photons (that is the intensity of the light). In higher energies and frequencies, the photoelectrons ejected get a kinetic energy equivalent to the difference among the photon's energy and the work function.

   Related Questions in Physics

  • Q : Explain Einstein field equation

    Einstein field equation: The cornerstone of Einstein's general theory of relativity, associating the gravitational tensor G to the stress-energy tensor T by the simple equation: G = 8 pi T<

  • Q : Define the term wave fronts What do you

    What do you mean by the term wave fronts? Explain in short.

  • Q : Define Relativity principle Relativity

    Relativity principle: The principle, utilized by Einstein's relativity theories, that the laws of physics are similar, at least qualitatively, in all frames. That is, there is no frame which is better (or qualitatively any different) from any other. T

  • Q : What do you mean by the term cardiac

    What do you mean by the term cardiac output? Briefly explain it.

  • Q : Explain Stern-Gerlach experiment

    Stern-Gerlach experiment (O. Stern, W. Gerlach; 1922): The experiment which explains the features of spin (that is intrinsic angular momentum) as a different entity apart from the orbital angular momentum.

  • Q : Explain Muon experiment Muon

    Muon experiment: The experiment that demonstrates proves the prediction of time dilation by the special relativity. Muons, that are short-lived subatomic particles, are made with enormous energy in the upper environment by the interaction of energetic

  • Q : Does solar radiation encompass a

    Does solar radiation encompass a complete spectrum of all the forms of electromagnetic radiation?

  • Q : Define Einstein-Podolsky-Rosen effect

    Einstein-Podolsky-Rosen effect: EPR effect: Consider the subsequent quantum mechanical thought-experiment: Take a particle that is at rest and has spun zero (0). This spontaneously decays into two fermions (spin 1/2 particles), that stream away in the

  • Q : Define Charles law Charles' law (J.A.C.

    Charles' law (J.A.C. Charles; c. 1787): The volume of an ideal gas at constant (steady) pressure is proportional to the thermodynamic temperature of that gas.

  • Q : Meaning of Network Define the meaning

    Define the meaning of Network in brief.