--%>

Explain oxygen and its preparation.

Karl Scheele, the Swedish chemist, was the first to prepare oxygen by heating mercuric oxide in 1772. He recognized the gas as one of the major constituents of atmospheric air and called it 'fire air'. Joseph Priestley, the English chemist also prepared oxygen by focusing the sun rays by means of a double lens on mercuric oxide. Priestley published his results in 1774 and has been regarded as the discoverer of oxygen. However, its elemental nature was proved by Lavoisier.

Oxygen is first element of group 16 of periodic table. It may be called the head of chalcogens family. Its configuration (1s22s22p4)shows the presence of six electrons in the valence shell. It does show some characteristics which are not shown by other members of the family because of its small size. For example, it is able to form pπ-pπ bonding and exists as diatomic molecule (O2). The other elements of the group do not exist as diatomic molecule due to their inability to form pπ-pπ bonding.

Isotopes of oxygen

Oxygen has three naturally occurring isotopes which are:

1870_dioxygen.png 

Out of these three isotopes, O-18 is radioactive in nature and finds frequent use in studying the mechanisms of organic reactions and other trace techniques. Like hydrogen, oxygen also exists in the elementary form as diatomic molecule (O2) and is referred to as dioxygen. 

Terrestrial abundance and distribution

Oxygen is the most abundant element on the surface of the earth. In Free State, it occurs in air and constitutes 21% by volume of air and 23% by weight. In the combined state, it constitutes 89% by mass of water and 50% by mass of earth's solid crust. In earth's solid crust, it is mainly present as silicates, carbonates, aluminates and oxides of metals.

Almost all the dioxygen in atmosphere is believed to be the result of photosynthesis by green plants which can be represented as 

1915_dioxygen1.png 

   Related Questions in Chemistry

  • Q : Explain vapour pressure of liquid

    Liquid solutions are obtained when the solvent is liquid. The solute can be a gas, liquid or a solid. In this section we will discuss the liquid solutions containing solid or liquid solutes. In such solutions the solute may or may not be volatile. We shall limit our d

  • Q : Strength of the Hydrochloric acid

    Provide solution of this question. 1.0 gm of pure calcium carbonate was found to need 50 ml of dilute HCL for complete reaction. The strength of the HCL solution is specified by : (a) 4 N (b) 2 N (c) 0.4 N (d) 0.2 N

  • Q : Number of electrons in the benzene

    Describe the number of electrons in the benzene? Write a short note on it?

  • Q : Osmotic Pressure The O.P. (Osmotic

    The O.P. (Osmotic Pressure) of equimolar solution of Urea, BaCl2 and AlCl3, will be in the order:(a) AlCl3 > BaCl2 > Urea  (b) BaCl2 > AlCl3 > Urea  (c) Urea > BaCl2<

  • Q : Mass percent Help me to go through this

    Help me to go through this problem. 10 grams of a solute is dissolved in 90 grams of a solvent. Its mass percent in solution is : (a) 0.01 (b) 11.1 (c)10 (d) 9

  • Q : Problem on decinormal strength Can

    Can someone please help me in getting through this problem. How many grams of dibasic acid (having mol. wt. 200) must be present in 100ml  of its aqueous solution to provide decinormal strength: (i) 1g  (ii)2g  (iii) 10g  (iv) 20g<

  • Q : Volume of solution containing solute

    What volume of solution contains 0.1 mole of the solute: (a) 100ml (b) 125ml  (c) 500ml (d) 62.5ml Choose the right answer from above.

  • Q : Molecular crystals Among the below

    Among the below shown which crystal will be soft and have low melting point: (a) Covalent  (b) Ionic  (c) Metallic  (d) MolecularAnswer: (d) Molecular crystals are soft and have low melting point.

  • Q : Problem on mol fraction of naphthalene

    At 20°C the solubility of solid naphthalene in hexane is 0.09 mol/mol of solution. Use this information and the data below to estimate the following for this system: a) The mol fraction of naphthalene in the vapour phase in equ

  • Q : Vander Waals forces Wax is an example

    Wax is an example of: (a) Ionic crystal  (b) Covalent crystal  (c) Metallic crystal  (d) Molecular crystalAnswer: (d) Iodine crystals are molecular crystals, in which constituent particles are molecules having inter particle