--%>

Explain oxygen and its preparation.

Karl Scheele, the Swedish chemist, was the first to prepare oxygen by heating mercuric oxide in 1772. He recognized the gas as one of the major constituents of atmospheric air and called it 'fire air'. Joseph Priestley, the English chemist also prepared oxygen by focusing the sun rays by means of a double lens on mercuric oxide. Priestley published his results in 1774 and has been regarded as the discoverer of oxygen. However, its elemental nature was proved by Lavoisier.

Oxygen is first element of group 16 of periodic table. It may be called the head of chalcogens family. Its configuration (1s22s22p4)shows the presence of six electrons in the valence shell. It does show some characteristics which are not shown by other members of the family because of its small size. For example, it is able to form pπ-pπ bonding and exists as diatomic molecule (O2). The other elements of the group do not exist as diatomic molecule due to their inability to form pπ-pπ bonding.

Isotopes of oxygen

Oxygen has three naturally occurring isotopes which are:

1870_dioxygen.png 

Out of these three isotopes, O-18 is radioactive in nature and finds frequent use in studying the mechanisms of organic reactions and other trace techniques. Like hydrogen, oxygen also exists in the elementary form as diatomic molecule (O2) and is referred to as dioxygen. 

Terrestrial abundance and distribution

Oxygen is the most abundant element on the surface of the earth. In Free State, it occurs in air and constitutes 21% by volume of air and 23% by weight. In the combined state, it constitutes 89% by mass of water and 50% by mass of earth's solid crust. In earth's solid crust, it is mainly present as silicates, carbonates, aluminates and oxides of metals.

Almost all the dioxygen in atmosphere is believed to be the result of photosynthesis by green plants which can be represented as 

1915_dioxygen1.png 

   Related Questions in Chemistry

  • Q : Define Bond Energies - Bond Charges

    Energy changes in some chemical reactions can be used to deduce the energies of chemical bonds. Our understanding of the molecular basis of thermodynamic properties is extended when we ask why the enthalpy change for a reaction is what it is. We deduce,

  • Q : Inorganic Chemistry Inorganic

    Inorganic Chemistry:In the year 1869, Russian Chemist Dmitry Mendeleyev forms the periodic table of the element. Since Newlands did before him in the year 1863, Mendeleyev categorizes the el

  • Q : Question based on relative lowering of

    Give me answer of this question. When a non-volatile solute is dissolved in a solvent, the relative lowering of vapour pressure is equal to: (a) Mole fraction of solute (b) Mole fraction of solvent (c) Concentration of the solute in grams per litre (d) Concentratio

  • Q : Chemistry brief discription of relative

    brief discription of relative lowering of vapour pressure

  • Q : Group Cations Explain how dissolving

    Explain how dissolving the Group IV carbonate precipitate with 6M CH3COOH, followed by the addition of extra acetic acid, establishes a buffer with a pH of approximately

  • Q : Number of moles present in water

    Provide solution of this question. How many moles of water are present in 180 of water: (a)1 mole (b)18 mole (c)10 mole (d)100 mole

  • Q : Diffusion Molecular View When the

    When the diffusion process is treated as the movement of particles through a solvent the diffusion coefficient can be related to the effective size of diffusing particles and the viscosity of the medium.To see how the experimental coefficients can be treat

  • Q : Molar and Volumetric flow rate problem

    Cyclohexane (C6H12) is produced by mixing Benzene and hydrogen. A process including a reactor, separator, and recycle stream is used to produce Cyclohexane. The fresh feed contains 260L/min C6H6 with 950 L/min of H2

  • Q : Question based on vapour pressure and

    Give me answer of this question. The vapour pressure of water at 20degreeC is 17.54 mm. When 20g of a non-ionic, substance is dissolved in 100g of water, the vapour pressure is lowered by 0.30 mm. What is the molecular weight of the substances: (a) 210.2 (b) 206.88

  • Q : How to test a gas to see if it was

    Write a short note to describe how to test a gas to see if it was hydrogen or not?