--%>

Explain Ohms law

Ohm's law (G. Ohm; 1827): The ratio of the potential difference among the ends of a conductor to the current flowing via it is constant; the constant of proportionality is termed as the resistance, and is distinct for different materials.

   Related Questions in Physics

  • Q : Explain Maxwells equations and its

    Explain Maxwells equations and its four elegant equation? Maxwell's equations (J.C. Maxwell; 1864): The four elegant equations that explain classical electroma

  • Q : What is Chandrasekhar limit

    Chandrasekhar limit (S. Chandrasekhar; 1930): A limit that mandates that no white dwarf (a collapsed, degenerate star) can be much massive than around 1.4 masses solar. Any of the degenerate mass more massive should inevitably collaps

  • Q : What do you mean by the term nucleus

    What do you mean by the term nucleus? Describe in brief.

  • Q : Explain Schroedingers cat

    Schroedinger's cat (E. Schroedinger; 1935): A thought experiment designed to exemplify the counterintuitive and strange ideas of reality that come all along with the quantum mechanics. A cat is sealed within a clos

  • Q : Define Kilogram or SI unit of mass

    Kilogram: kg: The basic SI unit of mass that is the only SI unit still maintained by a physical artifact: a platinum-iridium bar reserved in the International Bureau of Weights and Measures at Sevres, France.

  • Q : Define Joule-Thomson effect or

    Joule-Thomson effect: Joule-Kelvin effect (J.P. Joule, W. Thomson [later Lord Kelvin]): The change in temperature which takes place whenever a gas expands into an area of lower pressure.

  • Q : What is No-hair conjecture No-hair

    No-hair conjecture (1960s): The conjecture (confirmed in the 1970s and 1980s) in general relativity that a black hole has merely three salient external characteristics: angular momentum, mass, and electric charge. All the other proper

  • Q : What is Complementarity principle

    Complementarity principle (N. Bohr): The principle that a specified system can’t exhibit both wave-like behavior and particle-like behavior at similar time. That is, some experiments will reveal the wave-like nature of a system,

  • Q : Explain Superposition principle and

    Explain Superposition principle and their illustrations? Superposition principle: The common idea that, whenever a number of influences are performing on a syst

  • Q : Define Planck equation Planck equation:

    Planck equation: The quantum mechanical equation associating to the energy of a photon E to its frequency nu: E = h nu.