--%>

Explain Null experiment

Null experiment: The experiment which, after being performed, yields no outcome. The null experiments are just as significant as non-null experiments; when current theory predicts an observable result (or predicts there must be no observable result), and experimentation (in the requisite accuracy) does not yield said result, then the null experiment has told us rather about our theory.

   Related Questions in Physics

  • Q : Kinematics why rockets are also called

    why rockets are also called as projectile

  • Q : Problem on spacecraft Assuming that

    Assuming that ground stations are equally distributed on the Earth, how many ground stations are required to maintain constant contact with a spacecraft at 750 km altitude, and 72 degrees inclination?

  • Q : State Kohlrauschs law Kohlrausch's law

    Kohlrausch's law (F. Kohlrausch): When a salt is dissolved in water, the conductivity of the solution is the addition of two values -- one depending on the positive ions and the other on negative ions.

  • Q : What do you mean by the term cardiac

    What do you mean by the term cardiac output? Briefly explain it.

  • Q : Explain Joules laws and Joule's

    Joule's laws (J.P. Joule) Joule's first law: The heat Q generated whenever a current I flows via a resistance R for a specified time t is specified by: Q = I2

  • Q : Explain Fizeau method Fizeau method (A.

    Fizeau method (A. Fizeau, 1851): One of the primary truthfully relativistic experiments intended to compute the speed of light. Light is passed via a spinning cog-wheel driven by running water, is reflected off a far-away mirror, and

  • Q : What is Peltier effect Peltier effect

    Peltier effect (J.C.A. Peltier; 1834): The modification in temperature produced at a junction among the two dissimilar metals or semiconductors whenever an electric current passes through the junction.

  • Q : Explain Millikan oil drop experiment

    Millikan oil drop experiment (R.A. Millikan): A famed experiment designed to compute the electronic charge. The drops of oil were carried past a consistent electric field among charged plates. Subsequent to charging the drop with x-ra

  • Q : Calculate the intensity I along y axis

    As shown in the figure below, a source at S is sending out a spherical wave: E1=(A×D/r) cos(wt-2πr/λ); where r is the distance to source

  • Q : Define Pauli Exclusion Principle Pauli

    Pauli Exclusion Principle (W. Pauli; 1925): No two similar fermions in a system, like electrons in an atom, can contain an identical set of the quantum numbers.