--%>

Explain Muon experiment

Muon experiment: The experiment that demonstrates proves the prediction of time dilation by the special relativity. Muons, that are short-lived subatomic particles, are made with enormous energy in the upper environment by the interaction of energetic cosmic rays. The muons have a very short half life in their own reference frame, around 2.2 us. As they are travelling very near to c, though, time dilation effects must become significant. A naive computation would point out that, without special relativistic effects, the muons would travel on the average only around 700 m before decaying, never accomplishing the surface of the Earth. The observations reveal, though, that significant numbers of muons do reach the Earth. The elucidation is that muon is in a moving frame of reference, and therefore time is slowed down for the muons associative to the Earth, efficiently extending the half life of the muons associative to the Earth, permitting some of them to reach the surface.

   Related Questions in Physics

  • Q : Define Tau-theta paradox Tau-theta

    Tau-theta paradox (1950s): Whenever two distinct kinds of kaons, tau and theta (nowadays tau refers to a totally different particle) decay, tau decays into three particles, whereas the theta decays into two. The tau and theta vary onl

  • Q : Brewster's law Brewster's law (D.

    Brewster's law (D. Brewster) - The extent or level of the polarization of light reflected from a transparent surface is maximum whenever the reflected ray is at right angle to the refracted ray.  

  • Q : Explain Casimir effect Casimir effect

    Casimir effect (Casimir): The quantum mechanical effect, where two very big plates positioned close to each other will experience an attractive force, in the nonattendance of other forces. The cause is implicit particle-antiparticle p

  • Q : Define Metre or SI unit of length Metre

    Metre: meter; m: The basic SI unit of length, stated as the length of the path traveled by light in vacuum throughout a period of 1/299 792 458 s.

  • Q : Define Keplers 1-2-3 law Kepler's 1-2-3

    Kepler's 1-2-3 law: The other formulation of Kepler's third law, that relates to the mass m of the primary to a secondary's angular velocity omega and semi major axis a: m o = omega2 a3

  • Q : Define Faraday constant Faraday

    Faraday constant: F (M. Faraday): The electric charge fetched by one mole of electrons or singly-ionized ions. It is equivalent to the product result of the Avogadro constant and the absolute value of the charge on an electron; this i

  • Q : Define the term wave fronts What do you

    What do you mean by the term wave fronts? Explain in short.

  • Q : Problem on synchronous TDM We require

    We require using synchronous TDM and joining 20 digital sources, each of 100 Kbps. Each and every output slot carries 1 bit for each digital source, however one extra bit is added up to each frame for synchronization.

    Q : What is Arago spot What is  Arago

    What is Arago spot? The bright spot which appears in the shadow of a consistent disc being backlit by monochromatic light originating from a point source. &n

  • Q : Simulation using VMD and NMD programes

    I need the homework to be finished in five days. and could you please tell me if you are familiar with VMD and NMD simulation programs or not? I will send you some docments that I think it could help to solve the homework questions. But please send me an email so I can attached both files. all b