--%>

Explain Muon experiment

Muon experiment: The experiment that demonstrates proves the prediction of time dilation by the special relativity. Muons, that are short-lived subatomic particles, are made with enormous energy in the upper environment by the interaction of energetic cosmic rays. The muons have a very short half life in their own reference frame, around 2.2 us. As they are travelling very near to c, though, time dilation effects must become significant. A naive computation would point out that, without special relativistic effects, the muons would travel on the average only around 700 m before decaying, never accomplishing the surface of the Earth. The observations reveal, though, that significant numbers of muons do reach the Earth. The elucidation is that muon is in a moving frame of reference, and therefore time is slowed down for the muons associative to the Earth, efficiently extending the half life of the muons associative to the Earth, permitting some of them to reach the surface.

   Related Questions in Physics

  • Q : Universal law of universal gravitation

    Describe the universal law of universal gravitation? Briefly describe it.

  • Q : Explain avogadro's hypothesis

    Avogadro's hypothesis (Count A. Avogadro; 1811): Equivalent volumes of all gases at similar temperature and pressure contain equivalent numbers of molecules. This is, in fact, true only for the ideal gases.  <

  • Q : Explain Tachyon Tachyon: The purely

    Tachyon: The purely speculative particle that is supposed to travel faster than light. According to Sir Einstein's equations of special relativity, a particle with imaginary rest mass and a velocity more than c would contain a real momentum and energy

  • Q : Explain Ohms law Ohm's law (G. Ohm;

    Ohm's law (G. Ohm; 1827): The ratio of the potential difference among the ends of a conductor to the current flowing via it is constant; the constant of proportionality is termed as the resistance, and is distinct for different materials.

  • Q : Polar Materials The molecules of many

    The molecules of many dielectrics possess an electric dipole moment without having an external electric field. In such molecules centres of their positive and negative charges are displaced with respect to each other and therefore form a dipole. Such materials are kno

  • Q : Explain Davisson-Germer experiment

    Davisson-Germer experiment (C.J. Davisson, L.H. Germer; 1927): The experiment which conclusively proved the wave nature of electrons; diffraction patterns were examined by an electron beam penetrating into the nickel target.

  • Q : Define Compton Effect Compton Effect

    Compton Effect (A.H. Compton; 1923): The effect which describes those photons (that is the quantum of electromagnetic radiation) has momentum. The photon fired at a stationary particle, like an electron, will communicate momentum to t

  • Q : Define Centrifugal pseudo force

    Centrifugal pseudo force: A pseudo force which takes place whenever one is moving in uniform circular motion. One feels a "force" directed outward from the center of the motion.

  • Q : Concept of nuclear reaction Describe in

    Describe in brief the concept of nuclear reaction?

  • Q : Rest mass energy of the electron What

    What do you mean by the rest mass energy of the electron?