--%>

Explain Muon experiment

Muon experiment: The experiment that demonstrates proves the prediction of time dilation by the special relativity. Muons, that are short-lived subatomic particles, are made with enormous energy in the upper environment by the interaction of energetic cosmic rays. The muons have a very short half life in their own reference frame, around 2.2 us. As they are travelling very near to c, though, time dilation effects must become significant. A naive computation would point out that, without special relativistic effects, the muons would travel on the average only around 700 m before decaying, never accomplishing the surface of the Earth. The observations reveal, though, that significant numbers of muons do reach the Earth. The elucidation is that muon is in a moving frame of reference, and therefore time is slowed down for the muons associative to the Earth, efficiently extending the half life of the muons associative to the Earth, permitting some of them to reach the surface.

   Related Questions in Physics

  • Q : Elementary particles concepts Write

    Write down any two elementary particles that have nearly infinite life time?

  • Q : Define Luxon Luxon : The particle that

    Luxon: The particle that travels solely at c (that is the speed of light in vacuum). All luxons have a rest mass of exactly zero. Though they are mass less, luxons do take momentum. The photons are the prime illustration of luxons (that is the name it

  • Q : Explain Lagrange points Lagrange points

    Lagrange points: The points in the vicinity of two massive bodies (like the Earth and Moon) with each others' relevant gravities balance. There are five, labeled L1 via L5. L1, L2, and L3 lie all along the centerline among the centers

  • Q : What is neutral buoyancy What do you

    What do you mean by the term neutral buoyancy? Briefly illustrate it.

  • Q : Define Permittivity of free space or

    Permittivity of free space: electric constant; epsilon_0: The ratio of the electric displacement to the intensity of the electric field generating it in vacuum. It is equivalent to 8.854 x 10-12 F/m.

  • Q : Solution Of Laplace’s Equation 1. Solve

    1. Solve Laplace's equation for the electrical potential between two infinite parallel plates, which have a charge density per unit area -on one plate and a charge density per unit area -! on the second plate, and determine the electric field between the plates from t

  • Q : Weak equivalence or principle of

    Weak equivalence principle: principle of uniqueness of freefall: The idea in general relativity is that the world-line of a freefalling body is sovereign of its composition, structure, or state. This principle, hold by Newtonian mechanics and gravitat

  • Q : Calculating current in magnetically

    For the magnetically coupled circuit in Figure a, calculate I1 and I2. If the dotted terminals in are changed so that the circuit now becomes that in Figure b, re-calculate I1 and I2.

  • Q : Magnetism what's the unit of Curie

    what's the unit of Curie constant and how to calculate Bohr magneton from the plot of 1/Khi vs Temperature(K)?

  • Q : Explain Gauss law for magnetic fields

    Gauss' law for magnetic fields (K.F. Gauss): The magnetic flux via a closed surface is zero (0); no magnetic charges present; in its differential form, div B = 0