--%>

Explain Muon experiment

Muon experiment: The experiment that demonstrates proves the prediction of time dilation by the special relativity. Muons, that are short-lived subatomic particles, are made with enormous energy in the upper environment by the interaction of energetic cosmic rays. The muons have a very short half life in their own reference frame, around 2.2 us. As they are travelling very near to c, though, time dilation effects must become significant. A naive computation would point out that, without special relativistic effects, the muons would travel on the average only around 700 m before decaying, never accomplishing the surface of the Earth. The observations reveal, though, that significant numbers of muons do reach the Earth. The elucidation is that muon is in a moving frame of reference, and therefore time is slowed down for the muons associative to the Earth, efficiently extending the half life of the muons associative to the Earth, permitting some of them to reach the surface.

   Related Questions in Physics

  • Q : What is Hawking temperature Hawking

    Hawking temperature: The temperature of a black hole is caused by the emission of the hawking radiation. For a black hole with mass m, it is illustrated as: T = (hbar c3)/(8 pi G k m).

  • Q : Define Metre or SI unit of length Metre

    Metre: meter; m: The basic SI unit of length, stated as the length of the path traveled by light in vacuum throughout a period of 1/299 792 458 s.

  • Q : Problem on multi level TDM Ten sources,

    Ten sources, six with a bit rate of 200 Kbps and four with a bit rate of 400Kbps are to be combined using multi level TDM  with no sync bits. Answer the questions below about the final phase of multiplexing: a

  • Q : Define Doppler Effect Doppler Effect

    Doppler Effect (C.J. Doppler): The waves emitted by a moving object as received by an observer will be blue shifted (compressed) when approaching, redshifted (that is, elongated) if receding. This takes place both in sound and also el

  • Q : Define Charles law Charles' law (J.A.C.

    Charles' law (J.A.C. Charles; c. 1787): The volume of an ideal gas at constant (steady) pressure is proportional to the thermodynamic temperature of that gas.

  • Q : Calculate time needed for thermocouple

    A thermocouple of K type is suddenly exposed to air with temperature of 1273K, Initial temperature was 293 K. Calculate the time needed for the thermocouple read the temperature with accuracy of better that 99%. Ignore radiation and conduction. The measuring element has a ball shape of diameter o

  • Q : Why Cadmium rods are given in a nuclear

    Cadmium rods are given in a nuclear reactor. Explain why?

  • Q : Candela Candela : The basic SI unit of

    Candela: The basic SI unit of luminous intensity stated as the luminous intensity in a given direction of a source which emits monochromatic photons of frequency 540 x 1012 Hz and encompasses a radiant intensity in the direction of 1/683 W/

  • Q : Abhi what should be the choice of

    what should be the choice of standard unit.

  • Q : Explain Youngs experiment or

    Young's experiment: double-slit experiment (T. Young; 1801): A well-known experiment that exhibits the wave nature of light (and certainly of other particles). The light is passed from a small source into an opaque screen with the two thin slits. The