--%>

Molecular Diameters

The excluded volume b, introduced by vander Wall's as an empirical correction term, can be related to the size gas molecules. To do so, we assume the excluded volume is the result of the pairwise coming together of molecules. This assumption is justified when b values are obtained from second viral coefficient data. Fitting values for the empirical constants are derived from van der Waal's equation. Some b values obtained in this way are given in table.


So that we need to deal with a single molecular size parameter, we treat molecules as spherical particles. The diameter of a molecule is d. the volume of a molecule is v

The volume in which a pair of molecules cannot move because of each other's presence is indicated by the lightly shaded region. The radius of this excluded volume sphere is equal to the molecule diameter d. the volume excluded to the pair of molecules is 4/3πd3. We thus obtain,

= 4[4/3π (d/2)]3

The expression in brackets is the volume of a molecule.vander Waal's b term is the excluded volume per mole of the molecules. Thus we have, with N representing Avogadro's number,

B= 4n [4/3π (d/2)3] = 4N (vol. of molecule)

Molecular size and Lennard Jones intermolecular Attraction term based on second virial coefficient data:

Gas Excluded volume B, L mol-1 Molecular diam. D, pm ELJ, J × 10-21
He 0.021 255 0.14
Ne 0.026 274 0.49
Ar 0.050 341 1.68
Kr 0.058 358 2.49
Xe 0.084 405 3.11
H2 0.031 291 0.52
N2 0.061 364 1.28
O2 0.058 358 1.59
CH4 0.069 380 1.96
C(CH3)4 0.510 739 3.22


Van der Waal's equation and the Boyle temperature:

Gas Tboyle, K Tboyle/TC
H2 110 3.5
He 23 4.5
CH4 510 2.7
NH3 860 2.1
N2 330 2.6
O2 410 2.7


Example: calculate the radius of the molecule from the value of 0.069 L mol-1 for the excluded volume b that is obtained from the second virial coefficient data.

Solution: the volume of 1 mol of methane molecules is obtained by dividing the b value of 0.069 L mol-1 = 69 × 10-6 m3 mol-1 value by 4. Then division by Avogadro's number gives the volume per molecule. We have:

Volume of methane molecule = 69 × 10-6 m3/4 × 6.022 × 1023 

= 2.86 × 10-29 m
3

The volume is equal to 4/3∏r3 and on this basis we calculate:

r = 1.90 × 10-10 m and d = 3.80 × 10-10 m = 380 pm

   Related Questions in Chemistry

  • Q : What are various structure based

    This classification of polymers is based upon how the monomeric units are linked together. Based on their structure, the polymers are classified as: 1. Linear polymers: these are the polymers in which monomeric units are linked together to form long straight c

  • Q : How much phosphorus is in superphosphate

    Superphosphate has the formulate: CaH4 (PO4)2 H2O calculate the percentage of Phosphorus in this chemical. Show your calculations

  • Q : Problem on decinormal Select the right

    Select the right answer of the question. How much water is required to dilute 10 ml of 10 N hydrochloric acid to make it exactly decinormal (0.1 N): (a) 990 ml (b) 1000 ml (c) 1010 ml (d) 100 ml

  • Q : Problem on normality Help me to solve

    Help me to solve this problem. 0.5 M of H2AO4 is diluted from 1 lire to 10 litre, normality of resulting solution is : (a)1 N (b) 0.1 N (c)10 N (d)11 N

  • Q : Molality of Sulfuric acid Choose the

    Choose the right answer from following. The molality of 90% H2SO4 solution is: [density=1.8 gm/ml]  (a)1.8 (b) 48.4 (c) 9.18 (d) 94.6

  • Q : Water under pressure problem-henry law

    Can someone help me in going through this problem. The statement “When 0.003 moles of a gas are dissolved in 900 gm of water under a pressure of 1 atm, 0.006 moles will be dissolved under the pressure of 2 atm", signfies: (a)

  • Q : Problem on colligative properties

    Choose the right answer from following. The magnitude of colligative properties in all colloidal dispersions is : (a) Lowerthan solution (b)Higher than solution(c) Both (d) None

  • Q : Henry law question Answer the following

    Answer the following qustion. The definition “The mass of a gas dissolved in a particular mass of a solvent at any temperature is proportional to the pressure of gas over the solvent” is: (i) Dalton’s Law of Parti

  • Q : Problem on Neutralization What weight

    What weight of hydrated oxalic acid should be added for complete neutralisation of 100 ml of 0.2N - NaOH solution? (a) 0.45 g  (b)0.90 g  (c) 1.08 g  (d) 1.26 g      Answer

  • Q : Problem on distribution law The

    The distribution law is exerted for the distribution of basic acid among: (i) Water and ethyl alcohol (ii) Water and amyl alcohol (iii) Water and sulphuric acid (iv) Water and liquor ammonia What is the right answer.