--%>

Explain Michelson-Morley experiment

Michelson-Morley experiment (A.A. Michelson, E.W. Morley; 1887): Probably the most famous null-experiment of all time, designed to confirm the existence of the proposed "lumeniferous aether" via which light waves were considered to propagate. As the Earth moves via this aether, a light beam fired in the Earth's direction of motion would lag at the back one fired sideways; where no aether consequence would be exist. This difference could be noticed with the utilization of an interferometer.

The experiment exhibited absolutely no aether shift at all, where one must have been quite detectable. Therefore the aether concept was harmed the reputation of as was the idea which one measures the velocity of light as being added vectorially to the velocity of the emitter.

   Related Questions in Physics

  • Q : Define Josephson effects Josephson

    Josephson effects (B.D. Josephson; 1962): Electrical effects examined whenever two superconducting materials are separated by a thin layer of the insulating substance.

  • Q : Define Singularity Singularity : The

    Singularity: The center of a black hole, where the curvature of space-time is maximal. At singularity, the gravitational tides deviate; no solid object can yet theoretically survive beating the singularity. Though singularities usually predict inconsi

  • Q : Define Rayleigh criterion or resolving

    Rayleigh criterion: resolving power: The criterion for determining how delicately a set of optics might be able to differentiate. This  starts with the supposition that central ring of one image must fall on the first dark ring of the other; for

  • Q : What is Peltier effect Peltier effect

    Peltier effect (J.C.A. Peltier; 1834): The modification in temperature produced at a junction among the two dissimilar metals or semiconductors whenever an electric current passes through the junction.

  • Q : Define Schwarzschild radius

    Schwarzschild radius: The radius ‘r’ of the event horizon for a Schwarzschild black hole of mass m is specified by (in geometrized units) r = 2 m. In its conventional units: r = 2 G m/c2

  • Q : Define Brackett series Brackett series

    Brackett series (Brackett) - The series (or sequence) that explains the emission spectrum of hydrogen whenever the electron is jumping to fourth orbital. All of the lines are in the infrared segment of the spectrum.

  • Q : Calculate the intensity I along y axis

    As shown in the figure below, a source at S is sending out a spherical wave: E1=(A×D/r) cos(wt-2πr/λ); where r is the distance to source

  • Q : Define Doppler Effect Doppler Effect

    Doppler Effect (C.J. Doppler): The waves emitted by a moving object as received by an observer will be blue shifted (compressed) when approaching, redshifted (that is, elongated) if receding. This takes place both in sound and also el

  • Q : Biot-Savart law Biot-Savart law (J.B.

    Biot-Savart law (J.B. Biot, F. Savart) - The law which explains the contributions to the magnetic field by an electric current. This is analogous to the Coulomb's law. Mathematically: dB = (mu0 I)/(4 pi r2) dl cross e

  • Q : Define Zeeman Effect or Zeeman line

    Zeeman Effect: Zeeman line splitting (P. Zeeman; 1896): Zeeman Effect is the splitting of lines in a spectrum whenever the source is exposed to the magnetic field.