--%>

Explain methods for industrial preparation of alcohol.

The important methods for the preparation of alcohol on large-scale are given below:
    
By hydration of Alkenes

Alkenes are obtained by cracking of petroleum. They are easily converted to alcohols by the addition of water in presence of sulphuric acid.
                                 
1907_alcohol preparation.png 

In case of unsymmetrical alkenes, the addition takes place according to Markowniko's rule.
                          
681_alcohol preparation1.png 
    
By fermentation of carbohydrates

Formation of ethyl alcohol by the fermentation of sugar (obtained from molasses, grapes or beet) is one of the oldest methods. Sucrose is first of all changed to glucose and fructose with an enzyme invertase.
                                
1330_alcohol preparation2.png 

Enzyme zymase after that converts glucose and fructose into ethanol.

The enzyme zymase is present in yeast.
                              
65_alcohol preparation3.png 

The fermentation procedure is taken out under anaerobic conditions i.e. in the nonexistence of air. Carbon dioxide released during fermentation keeps the fermentation mixture out of contact of air. If the fermentation mixture gets exposed to air, the oxygen of air oxidizes ethanol to ethanoic acid which makes the mixture sour.

Ethanol is obtained from starchy materials such as barley, rice, maize and potatoes with enzymes diastase and maltase.
                        
1057_alcohol preparation4.png 

Enzyme diastase is obtained from germinated barley while enzyme maltase and zymase are obtained from yeast.
    
Oxo process

Alkenes react with carbon monoxide and hydrogen in the presence of Octacarbonyl dicobalt Co[CO]
                       
1121_alcohol preparation5.png

   Related Questions in Chemistry

  • Q : Some basic concepts of chemistry an

    an atom of an element is 10.1 times heavier than the mass of a carbon atom.What is its mass in amu?

  • Q : Problem on Clausius equation of state

    If a gas can be described by the Clausius equation of state: P (V-b) = RT Where b is a constant, then:  (a) Obtain an expression for the residual vo

  • Q : Molarity of pure water Choose the right

    Choose the right answer from following. The molarity of pure water is: (a) 55.6 (b) 5.56 (c)100 (d)18

  • Q : Can protein act as the buffer Can

    Can protein act as the buffer? Briefly comment on that statement.

  • Q : Sedimentation and Velocity The first

    The first method begins with a well defined layer, or boundary, of solution near the center of rotation and tracks the movement of this layer to the outside of the cell as a function of time. Such a method is termed a sedimentary velocity experiment. A

  • Q : What are diazonium salts? The diazonium

    The diazonium salts are represented by the general formula ArN2 +X where X- ion may be anion such as (Cl) ¨, B ¨r, HSO

  • Q : Explain physical properties of

    . Boiling pointsThe boiling points of monohalogen derivatives of benzene, which are all liquids, follow the orderIodo > Bromo > ChloroThe boiling points of isomeric dihalobe

  • Q : Organic and inorganic substances living

    living beings are made up of organic and inorganic substances.according to their complexity of their molecules how can ach of these substances be classified?

  • Q : Group Cations Explain how dissolving

    Explain how dissolving the Group IV carbonate precipitate with 6M CH3COOH, followed by the addition of extra acetic acid, establishes a buffer with a pH of approximately

  • Q : Laws of Chemical Combination Laws of

    Laws of Chemical Combination- In order to understand the composition of the compounds, it is necessary to have a theory which accounts for both qualitative and quantitative observations during chem