Explain Maxwells equations and its elegant equation

Explain Maxwells equations and its four elegant equation?

Maxwell's equations (J.C. Maxwell; 1864):

The four elegant equations that explain classical electromagnetism in its entire splendor. They are:

Gauss law:
The electric flux via a closed surface is proportional to the arithmetical sum of electric charges encompassed within that closed surface; in its differential form,

div E = rho,

Here rho is the charge density.

Gauss law for magnetic fields:

The magnetic flux via a closed surface is zero (0); no magnetic charges exist. In the differential form,

div B = 0

Faraday's law:

The line integral of the electric field about a closed curve is proportional to the instant time rate of change of the magnetic flux via a surface bounded by that closed curve; in its differential form,

curl E = -dB/dt,

Here d/dt here symbolizes partial differentiation.

Ampere's law, modified form:

The line integral of the magnetic field about a closed curve is proportional to the addition of two terms: first, the arithmetical sum of electric currents flowing via that closed curve; and second, the instant time rate of change of the electric flux via a surface bounded by that closed curve; in its differential form,

curl H = J + dD/dt,

Here d/dt here symbolizes partial differentiation.

In addition to explaining electromagnetism, his equations too predict that waves can propagate via the electromagnetic field, and would for all time propagate at similar speed -- these are electromagnetic waves; the speed can be found by evaluating (epsilon0 mu0)-1/2, that is c, the speed of light in vacuum.

   Related Questions in Physics

  • Q : State Kohlrauschs law Kohlrausch's law

    Kohlrausch's law (F. Kohlrausch): When a salt is dissolved in water, the conductivity of the solution is the addition of two values -- one depending on the positive ions and the other on negative ions.

  • Q : Explain Rayleigh-Jeans law

    Rayleigh-Jeans law: For a blackbody at the thermodynamic temperature T, the radiance R over a range of frequencies between the nu and nu + dnu is specified by: R = 2 pi nu2 k T/c2.<

  • Q : Explain Poisson equation and Poisson

    Explain Poisson equation and Poisson spot: Poisson equation (S.D. Poisson): The differential form of Gauss' law, that is, div E = rho, Pois

  • Q : Define Hubbles law Hubble's law (E.P.

    Hubble's law (E.P. Hubble; 1925): The relationship discovered between radial velocity and distance. The further away a galaxy is away from is, the quicker it is receding away from us. The constant of proportionality is the Hubble cons

  • Q : What is Geometrized units Geometrized

    Geometrized units: The system of units whereby certain basic constants (G, c, k, and h) are set to unison. This makes computations in certain theories, like general relativity, much simpler to deal with, as such constants appear often.

    Q : Explain Lagrange points Lagrange points

    Lagrange points: The points in the vicinity of two massive bodies (like the Earth and Moon) with each others' relevant gravities balance. There are five, labeled L1 via L5. L1, L2, and L3 lie all along the centerline among the centers

  • Q : What is Dulong-Petit law Dulong-Petit

    Dulong-Petit law (P. Dulong, A.T. Petit; 1819): The molar heat capacity is around equivalent to the three times the ideal gas constant: C = 3 R

  • Q : Define Van der Waals force Van der

    Van der Waals force (J.D. van der Waals): The forces responsible for non-ideal behavior of gases, and for lattice energy of molecular crystals. There are three main causes: dipole-dipole interaction; dipole-induced dipole moments; and dispersion a for

  • Q : Define Centrifugal pseudo force

    Centrifugal pseudo force: A pseudo force which takes place whenever one is moving in uniform circular motion. One feels a "force" directed outward from the center of the motion.

  • Q : Define neuro-modulators What do you

    What do you mean by the term neuro-modulators? Briefly define it.

©TutorsGlobe All rights reserved 2022-2023.