--%>

Explain Maxwells equations and its elegant equation

Explain Maxwells equations and its four elegant equation?

Maxwell's equations (J.C. Maxwell; 1864):

The four elegant equations that explain classical electromagnetism in its entire splendor. They are:

Gauss law:
The electric flux via a closed surface is proportional to the arithmetical sum of electric charges encompassed within that closed surface; in its differential form,

div E = rho,

Here rho is the charge density.

Gauss law for magnetic fields:

The magnetic flux via a closed surface is zero (0); no magnetic charges exist. In the differential form,

div B = 0

Faraday's law:

The line integral of the electric field about a closed curve is proportional to the instant time rate of change of the magnetic flux via a surface bounded by that closed curve; in its differential form,

curl E = -dB/dt,

Here d/dt here symbolizes partial differentiation.

Ampere's law, modified form:

The line integral of the magnetic field about a closed curve is proportional to the addition of two terms: first, the arithmetical sum of electric currents flowing via that closed curve; and second, the instant time rate of change of the electric flux via a surface bounded by that closed curve; in its differential form,

curl H = J + dD/dt,

Here d/dt here symbolizes partial differentiation.

In addition to explaining electromagnetism, his equations too predict that waves can propagate via the electromagnetic field, and would for all time propagate at similar speed -- these are electromagnetic waves; the speed can be found by evaluating (epsilon0 mu0)-1/2, that is c, the speed of light in vacuum.

   Related Questions in Physics

  • Q : Development of Missile technology Name

    Name the women scientist who played the essential role in the development of Missile technology of India and is nick named as the ‘Missile Woman’?

  • Q : Describe Solar water heating Solar

    Solar water heating: Solar water heaters are simple, reliable, famous and widespread. They are probably the Low Carbon technology closest to being commercially practised. The most efficient designs concentrate solar radiation onto a small diameter tub

  • Q : Define Relativity principle Relativity

    Relativity principle: The principle, utilized by Einstein's relativity theories, that the laws of physics are similar, at least qualitatively, in all frames. That is, there is no frame which is better (or qualitatively any different) from any other. T

  • Q : Why tea kettle sing What is the reason

    What is the reason that the tea kettle sing? Briefly state the reason.

  • Q : What is Reflection law Reflection law :

    Reflection law: For a wave-front intersecting a reflecting surface, the angle of incidence is equivalent to the angle of reflection, in the similar plane stated by the ray of incidence and the normal.

  • Q : Define Coulomb or SI unit of electric

    Coulomb: C (after C. de Coulomb, 1736-1806): The derived SI unit of an electric charge, stated as the quantity of charge shifted by a current of 1 A in a period of 1 s; it therefore has units of A s.

  • Q : Explain Ohms law Ohm's law (G. Ohm;

    Ohm's law (G. Ohm; 1827): The ratio of the potential difference among the ends of a conductor to the current flowing via it is constant; the constant of proportionality is termed as the resistance, and is distinct for different materials.

  • Q : Define Henry or SI unit of inductance

    Henry: H (after W. Henry, 1775-1836): The derived SI unit of inductance, stated as the inductance of a closed circuit in which the electromotive force of 1 V is generated whenever the electric current differs uniformly at a rate of 1

  • Q : Weights in pounds of the liquid gallons

    Write down the weights in pounds of the liquid gallons? Briefly describe it.

  • Q : Define Systeme Internationale d'Unites

    Systeme Internationale d'Unites (SI): The rationalized and coherent system of units derived from the m.k.s. system (that itself is derived from metric system) in common utilization in physics nowadays.