Explain Maxwells equations and its elegant equation

Explain Maxwells equations and its four elegant equation?

Maxwell's equations (J.C. Maxwell; 1864):

The four elegant equations that explain classical electromagnetism in its entire splendor. They are:

Gauss law:
The electric flux via a closed surface is proportional to the arithmetical sum of electric charges encompassed within that closed surface; in its differential form,

div E = rho,

Here rho is the charge density.

Gauss law for magnetic fields:

The magnetic flux via a closed surface is zero (0); no magnetic charges exist. In the differential form,

div B = 0

Faraday's law:

The line integral of the electric field about a closed curve is proportional to the instant time rate of change of the magnetic flux via a surface bounded by that closed curve; in its differential form,

curl E = -dB/dt,

Here d/dt here symbolizes partial differentiation.

Ampere's law, modified form:

The line integral of the magnetic field about a closed curve is proportional to the addition of two terms: first, the arithmetical sum of electric currents flowing via that closed curve; and second, the instant time rate of change of the electric flux via a surface bounded by that closed curve; in its differential form,

curl H = J + dD/dt,

Here d/dt here symbolizes partial differentiation.

In addition to explaining electromagnetism, his equations too predict that waves can propagate via the electromagnetic field, and would for all time propagate at similar speed -- these are electromagnetic waves; the speed can be found by evaluating (epsilon0 mu0)-1/2, that is c, the speed of light in vacuum.

   Related Questions in Physics

  • Q : Meaning of Network Define the meaning

    Define the meaning of Network in brief.

  • Q : What is De Broglie wavelength De

    De Broglie wavelength (L. de Broglie; 1924): The prediction that particles too contain wave characteristics, where the efficient wavelength of the particle would be inversely proportional to its momentum, where the constant of the pro

  • Q : Describe the term ntu in thermodynamics

    Describe the term ntu in thermodynamics? Illustrate in short.

  • Q : Calculate power consumed : A voltage v

    : A voltage v = 150 + j180 is applied across an impedance and the current flowing is I = 5 - j4 find ? A, impedance . B, resistance. C, reactance. D, power consumed. 

  • Q : Describe Solar water heating Solar

    Solar water heating: Solar water heaters are simple, reliable, famous and widespread. They are probably the Low Carbon technology closest to being commercially practised. The most efficient designs concentrate solar radiation onto a small diameter tub

  • Q : What is Gray Gray : Gy (after L.H.

    Gray: Gy (after L.H. Gray, 1905-1965): The derived SI unit of engrossed dose, stated as the absorbed dose in which the energy per unit mass communicated to the matter by the ionizing radiation is 1 J/kg; it therefore has units of J/kg

  • Q : Define Tau-theta paradox Tau-theta

    Tau-theta paradox (1950s): Whenever two distinct kinds of kaons, tau and theta (nowadays tau refers to a totally different particle) decay, tau decays into three particles, whereas the theta decays into two. The tau and theta vary onl

  • Q : Define Planck constant Planck constant

    Planck constant: h: The basic constant equivalent to the ratio of the energy of a quantum of energy to its frequency. This is the quantum of action. This has the value 6.626 196 x 10-34 J s.

  • Q : Define Parsec Parsec : The unit of

    Parsec: The unit of distance stated as the distance pointed by an Earth-orbit parallax of 1 arcsec. It equals around 206 264 au, or about 3.086 x 1016 m

  • Q : Law of Lamberts Cosine State the law of

    State the law of Lamberts Cosine? Describe briefly?

©TutorsGlobe All rights reserved 2022-2023.