--%>

Explain lognormal stochastic differential equation

Explain lognormal stochastic differential equation for evolution of an asset.

E

Expert

Verified

One of the beginning points for typical derivatives theory is the lognormal stochastic differential equation for evolution of a certain asset. Itoˆ’s lemma defines the stochastic differential equation for value of an option on such asset. In mathematical terms, when we have a Wiener process X along with increments dX which are normally distributed along with mean zero and variance dt, in that case the increment of a function F(X) is specified by

dF = (dF/dX) dX + ½ (d2F/dX2) dt

It is a very loose dentition of Itˆ o’s lemma but it will suffice.

   Related Questions in Mathematics

  • Q : Breakfast program if the average is

    if the average is 0.27 and we have $500 how much break fastest will we serve by 2 weeks

  • Q : Calculus I need it within 4 hours. Due

    I need it within 4 hours. Due time March 15, 2014. 3PM Pacific Time. (Los Angeles, CA)

  • Q : Nonlinear integer programming problem

    Explain Nonlinear integer programming problem with an example ?

  • Q : Examples of groups Examples of groups:

    Examples of groups: We now start to survey a wide range of examples of groups (labelled by (A), (B), (C), . . . ). Most of these come from number theory. In all cases, the group axioms should be checked. This is easy for almost all of the examples, an

  • Q : What is Big-O hierarchy The big-O

    The big-O hierarchy: A few basic facts about the big-O behaviour of some familiar functions are very important. Let p(n) be a polynomial in n (of any degree). Then logbn is O(p(n)) and p(n) is O(an<

  • Q : Numerical Analysis Hi, I was wondering

    Hi, I was wondering if there is anyone who can perform numerical analysis and write a code when required. Thanks

  • Q : Explain lognormal stochastic

    Explain lognormal stochastic differential equation for evolution of an asset.

  • Q : Who derived the Black–Scholes Equation

    Who derived the Black–Scholes Equation?

  • Q : Law of iterated expectations for

     Prove the law of iterated expectations for continuous random variables. 2. Prove that the bounds in Chebyshev's theorem cannot be improved upon. I.e., provide a distribution that satisfies the bounds exactly for k ≥1, show that it satisfies the bounds exactly, and draw its PDF. T

  • Q : Problem on Linear equations Anny, Betti

    Anny, Betti and Karol went to their local produce store to bpought some fruit. Anny bought 1 pound of apples and 2 pounds of bananas and paid $2.11.  Betti bought 2 pounds of apples and 1 pound of grapes and paid $4.06.  Karol bought 1 pound of bananas and 2