--%>

Explain Lagrange points

Lagrange points: The points in the vicinity of two massive bodies (like the Earth and Moon) with each others' relevant gravities balance. There are five, labeled L1 via L5. L1, L2, and L3 lie all along the centerline among the centers of mass between the two masses; L1 is on the inner side of the secondary, L2 is on the external side of the secondary; and L3 is on the external side of the primary. L4 and L5, the so-called Trojan points, lie all along the orbit of the secondary about the primary, 60 degrees ahead and at the back of the secondary.

L1 via L3 are points of unstable equilibrium; any trouble will move a test particle there out of the Lagrange point. L4 and L5 are the points of stable equilibrium, given that the mass of the secondary is less than around 1/24.96 the mass of the primary. Such points are stable as centrifugal pseudo forces work against the gravity to cancel it out.

   Related Questions in Physics

  • Q : Define Hubbles law Hubble's law (E.P.

    Hubble's law (E.P. Hubble; 1925): The relationship discovered between radial velocity and distance. The further away a galaxy is away from is, the quicker it is receding away from us. The constant of proportionality is the Hubble cons

  • Q : What is Cosmic censorship conjecture

    Cosmic censorship conjecture (R. Penrose, 1979): The conjecture, so far wholly undemonstrated in the context of general relativity, that all singularities (that is with the possible exception of the big bang singularity) are attended

  • Q : Explain the cause of Brownian motion

    Briefly define or explain the cause of Brownian motion?

  • Q : Calculate the intensity I along y axis

    As shown in the figure below, a source at S is sending out a spherical wave: E1=(A×D/r) cos(wt-2πr/λ); where r is the distance to source

  • Q : Explain Stefan-Boltzmann law

    Stefan-Boltzmann law (Stefan, L. Boltzmann): The radiated power P (that is the rate of emission of electromagnetic energy) of a hot body is proportional to the radiating surface area, A, and the 4th power of the thermodynamic temperature, T. The const

  • Q : Explain Archimedes' principle What is 

    What is Archimedes' principle? A body which is submerged in a fluid is buoyed up by a force equivalent in magnitude to the weight of the fluid which is displaced, and directed upward all along a line via the c

  • Q : Describe Solar water heating Solar

    Solar water heating: Solar water heaters are simple, reliable, famous and widespread. They are probably the Low Carbon technology closest to being commercially practised. The most efficient designs concentrate solar radiation onto a small diameter tub

  • Q : Describe Wien displacement law Wien

    Wien displacement law: For a blackbody, the product result of the wavelength corresponding to the maximum radiances and the thermodynamic temperature is constant, then the Wien displacement law constant. As an outcome, as the temperature increases, th

  • Q : What is Kirchhoffs law of radiation

    Kirchhoff's law of radiation (G.R. Kirchhoff): The emissivity of a body is equivalent to its absorbptance at similar temperature.

  • Q : Explain Ideal gas equation Ideal gas

    Ideal gas equation: The equation that sums up the ideal gas laws in one simple equation, P V = n R T, Here V is the volume, P is the pressure, n is the