--%>

Explain Ionic Bond with examples.

The bonding in ionic molecules can be described with a coulombic attractive term.

For some diatomic molecules we take quite a different approach from that used in preceding sections to describe the bonding. Ionic bonds are interpreted in terms of the coulombic attraction between ions. Since the electronic details of these ions are not dealt with the approach does not require quantum mechanical calculations. The treatment is easier but, as you will see, less satisfying than those in which a complete quantum mechanical description is set up and, with various recognized simplifications, solved.

Let us consider, to be specific, the NaCl molecule. The molecule exists in the high temperature vapour, and its bonding energy and equilibrium bond length and some features of its energy versus internuclear distance curve are known. These are shown by the solid curve of the products of dissociation of an NaCl molecule are the gas phase Na and Cl atoms.

Now let us attempt to develop an energy intermolecular distance curve by using the internuclear model. The energy required converting Na atoms to Na+ ions and Cl atoms to Cl- ions, all in the gas state, can be calculated from ionization:

Na 2118_First order reactions1.png Na = + e         ?U = =495 kJ mol-1

Cl + e- 2118_First order reactions1.png Cl-              ?U = - 349 KJ mol-1

And thus,

Na = Cl 2118_First order reactions1.png Na+ + Cl-    ?U = + 146 KJ mol-1

Infinitely separated gas phase Na and Cl ions lie at an energy 147 KJ mol-1 higher than separateNa and Cl atoms.

As Na+ and Clions approach each other, the potential energy becomes more negative. If we treat the ions at point charges, this potential energy is given by the coulombic term:

Ucoul = - e2/ (4∏e0)/ r

Where r is the internuclear distance, a curve for this function, based on the energies of separateNa+ and Cl- ions has been added.

An opposing effect exists in the form of repulsion between the nuclei, each with its closed shell of electrons. This repulsion term cannot easily be deduced, and it is satisfactory here to use an empirical expression to represent the repulsion that sets in at small internuclear distances. The variation of this repulsive energy contribution with internuclear distance is satisfactorily represented by an empirical equation of the form:

Urep = be-r/p, where p and b are empirical constants.

Furthermore, to a quite good approximation, the constant p can be taken to be the same for all ionic molecules and equal to 0.30 × 10 -10 m = 30 pm. Thus,

Urep = be -r/(0.30 × 10-10)

The total potential energy can now be written as:

U = - e2/(4∏e0)/r + be -r/(0.30 × 10-10)


The value of the remaining empirical constant b can be deduced by requiring U to have a minimum at the experimentally determined equilibrium bond length. Setting the derivate equal to zero for r = 2.36 × 10-10 m, the equilibrium bond length for NaCl, gives b = 1.95 × 105 kJmol-1. Substitution of the numerical value e2/(4∏eo) and expressing r in picometers gives:

U(kJ mol-1) = - 138,900/r + 195,000e-r/30 (r in picometers)


Calculated dissociation energy = 514 - 146 = 368 KJ mol-1

The result can be compared with the experiment value of 406 kJ mol-1

The attraction energy curve, the repulsion energy curve, and the total energy curve are the ionic model describes the system satisfactorily up to an internuclear separation of about 100 pm. Then the bond description must changes so that at complete separation the products released from each other are atoms rather than ions. 

   Related Questions in Chemistry

  • Q : Problem on mol fraction of naphthalene

    At 20°C the solubility of solid naphthalene in hexane is 0.09 mol/mol of solution. Use this information and the data below to estimate the following for this system: a) The mol fraction of naphthalene in the vapour phase in equ

  • Q : Effect on vapour pressure of dissolving

    Give me answer of this question. When a substance is dissolved in a solvent the vapour pressure of the solvent is decreased. This results in: (a) An increase in the b.p. of the solution (b) A decrease in the b.p. of the solvent (c) The solution having a higher fr

  • Q : Finding Molarity of final mixture Can

    Can someone help me in finding out the right answer. 25ml of 3.0 MHNO3 are mixed with 75ml of 4.0 MHNO3. If the volumes are adding up the molarnity of the final mixture would be: (a) 3.25M (b) 4.0M (c) 3.75M (d) 3.50M

  • Q : Macromolecules what are condensation

    what are condensation polymerization give in with 2 examples

  • Q : Hydroxide is highly insoluble in

     : 1) Chromium(III) hydroxide is highly insoluble in distilled water but dissolves readily in either acidic or basic solution. Briefly explain why the compound can dissolve in acidic or in basic but not in neutral solution. Write appropriate equations to

  • Q : Problem associated to vapour pressure

    Provide solution of this question. 60 gm of Urea (Mol. wt 60) was dissolved in 9.9 moles, of water. If the vapour pressure of pure water is P0 , the vapour pressure of solution is:(a) 0.10P0 (b) 1.10P0 (c) 0.90P0 (d) 0.99P0

  • Q : Schrodinger equation with particle in a

    Three dimensional applications of the Schrodinger equation are introduced by the particle-in-a-box problem.So far only a one-dimensional problem has been solved by application of the Schrodinger equation. Now the allowed energies and the probability functi

  • Q : What is heat capacity and how to

    The temperature reliance of internal energy and enthalpy depends on the heat capacities at constant volume and constant pressure. The internal energy and enthalpy of chemical systems and the energy changes that accompany chemical reactions depend on the

  • Q : C-X bond length in halobenzene less

    C-X bond length in halobenzene less then C-X bond lengthin CH3-x

  • Q : Problem on making solutions The weight

    The weight of pure NaOH needed to made 250cm3 of 0.1 N solution is: (a) 4g  (b) 1g  (c) 2g  (d) 10g Choose the right answer from above.