--%>

Explain Ionic Bond with examples.

The bonding in ionic molecules can be described with a coulombic attractive term.

For some diatomic molecules we take quite a different approach from that used in preceding sections to describe the bonding. Ionic bonds are interpreted in terms of the coulombic attraction between ions. Since the electronic details of these ions are not dealt with the approach does not require quantum mechanical calculations. The treatment is easier but, as you will see, less satisfying than those in which a complete quantum mechanical description is set up and, with various recognized simplifications, solved.

Let us consider, to be specific, the NaCl molecule. The molecule exists in the high temperature vapour, and its bonding energy and equilibrium bond length and some features of its energy versus internuclear distance curve are known. These are shown by the solid curve of the products of dissociation of an NaCl molecule are the gas phase Na and Cl atoms.

Now let us attempt to develop an energy intermolecular distance curve by using the internuclear model. The energy required converting Na atoms to Na+ ions and Cl atoms to Cl- ions, all in the gas state, can be calculated from ionization:

Na 2118_First order reactions1.png Na = + e         ?U = =495 kJ mol-1

Cl + e- 2118_First order reactions1.png Cl-              ?U = - 349 KJ mol-1

And thus,

Na = Cl 2118_First order reactions1.png Na+ + Cl-    ?U = + 146 KJ mol-1

Infinitely separated gas phase Na and Cl ions lie at an energy 147 KJ mol-1 higher than separateNa and Cl atoms.

As Na+ and Clions approach each other, the potential energy becomes more negative. If we treat the ions at point charges, this potential energy is given by the coulombic term:

Ucoul = - e2/ (4∏e0)/ r

Where r is the internuclear distance, a curve for this function, based on the energies of separateNa+ and Cl- ions has been added.

An opposing effect exists in the form of repulsion between the nuclei, each with its closed shell of electrons. This repulsion term cannot easily be deduced, and it is satisfactory here to use an empirical expression to represent the repulsion that sets in at small internuclear distances. The variation of this repulsive energy contribution with internuclear distance is satisfactorily represented by an empirical equation of the form:

Urep = be-r/p, where p and b are empirical constants.

Furthermore, to a quite good approximation, the constant p can be taken to be the same for all ionic molecules and equal to 0.30 × 10 -10 m = 30 pm. Thus,

Urep = be -r/(0.30 × 10-10)

The total potential energy can now be written as:

U = - e2/(4∏e0)/r + be -r/(0.30 × 10-10)


The value of the remaining empirical constant b can be deduced by requiring U to have a minimum at the experimentally determined equilibrium bond length. Setting the derivate equal to zero for r = 2.36 × 10-10 m, the equilibrium bond length for NaCl, gives b = 1.95 × 105 kJmol-1. Substitution of the numerical value e2/(4∏eo) and expressing r in picometers gives:

U(kJ mol-1) = - 138,900/r + 195,000e-r/30 (r in picometers)


Calculated dissociation energy = 514 - 146 = 368 KJ mol-1

The result can be compared with the experiment value of 406 kJ mol-1

The attraction energy curve, the repulsion energy curve, and the total energy curve are the ionic model describes the system satisfactorily up to an internuclear separation of about 100 pm. Then the bond description must changes so that at complete separation the products released from each other are atoms rather than ions. 

   Related Questions in Chemistry

  • Q : Molar mass of compound The freezing

    The freezing point of a solution having 4.8 g of a compound in 60 g of benzene is 4.48. Determine the molar mass of the compound (Kf = 5.1 Km-1) , (freezing point of  benzene = 5.5oC)          &n

  • Q : Explain the molecular mass with respect

    During the formation of polymers, different macromolecules have different degree of polymerisation i.e. they have varied chain lengths. Thus, the molecular masses of the individual macromolecules in a particular sample of the polymer are different. Hence, an average value of the molecular mass is

  • Q : Problem on Adiabatic expansion

    Calculate the change in entropy for the system for each of the following cases. Explain the sign that you obtain by a physical argument a) A gas undergoes a reversible, adiabatic expansion from an initial state at 500 K, 1 MPa, and

  • Q : Analytical chemistry 37% weight of HCl

    37% weight of HCl and density is 1.1g/ml. find molarity of HCl

  • Q : Meaning of molality of a solution The

    The molality of a solution will be: (i) Number of moles of solute per 1000 ml of solvent (ii) Number of moles of solute per 1000 gm of solvent (iii) Number of moles of solute per 1000 ml of solution (iv) Number of gram equivalents of solute per 1000 m

  • Q : Real vapour pressure Choose the right

    Choose the right answer from following. The pressure under which liquid and vapour can coexist at equilibrium is called the : (a) Limiting vapour pressure (b) Real vapour pressure (c) Normal vapour pressure (d) Saturated vapour pressure

  • Q : Haloalkene with the help of polarity of

    with the help of polarity of c-x bond show that aryl halides are less reactive than alkyl halides

  • Q : Determining of normality of sodium

    Can someone please help me in getting through this problem. The normality of a solution of sodium hydroxide 100 ml of which includes 4 grams of NaOH is: (a) 0.1 (b) 40 (c) 1.0 (d) 0.4

  • Q : What is Elevation in boiling point? The

    The boiling of a liquid may be defused by the temperature at which its vapour pressure which is equal to atmospheric pressure. The effect of addition in a non-volatile solute on the boiling point shown and its solution containing non-volatile solute with tempe

  • Q : Application of colligative properties

    Choose the right answer from following. Colligative properties are used for the determination of: (a) Molar Mass (b) Equivalent weight (c) Arrangement of molecules (d) Melting point and boiling point (d) Both (a) and (b)