--%>

Explain Ideal gas equation

Ideal gas equation: The equation that sums up the ideal gas laws in one simple equation,

P V = n R T,

Here V is the volume, P is the pressure, n is the number of moles present, and T is the temperature of the sample.

   Related Questions in Physics

  • Q : Define Kirkwood gaps Kirkwood gaps

    Kirkwood gaps (Kirkwood): The gaps in the asteroid belt, caused by the resonance effects from Jupiter. Similar gaps are also exists in Saturn's rings, due to the resonance effects of the shepherd moons.

  • Q : Explain Boyle's law Boyle's law (R.

    Boyle's law (R. Boyle; 1662); Mariotte's law (E. Mariotte; 1676) - The product result of the volume and pressure of an ideal gas at constant (steady) temperature is constant.

  • Q : Problem on multi level TDM Ten sources,

    Ten sources, six with a bit rate of 200 Kbps and four with a bit rate of 400Kbps are to be combined using multi level TDM  with no sync bits. Answer the questions below about the final phase of multiplexing: a

  • Q : Explain Schroedingers cat

    Schroedinger's cat (E. Schroedinger; 1935): A thought experiment designed to exemplify the counterintuitive and strange ideas of reality that come all along with the quantum mechanics. A cat is sealed within a clos

  • Q : Define Hall Effect Hall Effect:

    Hall Effect: Whenever charged particles flow via a tube that has both an electric field and a magnetic field (that is perpendicular to the electric field) present in it, only assured velocities of the charged particles are favored, and will make it un

  • Q : Explain avogadro's hypothesis

    Avogadro's hypothesis (Count A. Avogadro; 1811): Equivalent volumes of all gases at similar temperature and pressure contain equivalent numbers of molecules. This is, in fact, true only for the ideal gases.  <

  • Q : What is Pfund series Pfund series: The

    Pfund series: The series that explains the emission spectrum of hydrogen whenever the electron is jumping to the fifth orbital. Each line is in the infrared part of the spectrum.

  • Q : Why the length of a standard meter

    Describe the reason in short why the length of a standard meter re-defined in the year of 1983?

  • Q : Explain Davisson-Germer experiment

    Davisson-Germer experiment (C.J. Davisson, L.H. Germer; 1927): The experiment which conclusively proved the wave nature of electrons; diffraction patterns were examined by an electron beam penetrating into the nickel target.

  • Q : What is Kirchhoffs law of radiation

    Kirchhoff's law of radiation (G.R. Kirchhoff): The emissivity of a body is equivalent to its absorbptance at similar temperature.