--%>

Explain Hawking radiation

Hawking radiation (S.W. Hawking; 1973): The theory which black holes emit radiation similar to any other hot body. The virtual particle-antiparticle pairs are continuously being made in supposedly empty space. Infrequently, a pair will be made just exterior to the event horizon of a black hole. There are three possibilities as:

•    Both particles are imprisoned by the hole;
•    Both particles flee the hole;
•    One particle flees while another is captured.

The first two situations are straightforward; the virtual particle-antiparticle pair recombines and returns their energy back to the void through the uncertainty principle.

This is the third situation which interests us. In this situation, one of the particles has escaped (and is speeding away to the infinity), whereas the other has been imprisoned by the hole. The escape becomes real and can now be noticed by distant observers. However the captured particle is still virtual; since of this, it has to restore conservation of energy by conveying itself a negative mass-energy. As the hole has absorbed it, the hole loses mass and therefore appears to shrink. From a distance, it comes out as if the hole has released a particle and diminished in mass.

The rate of power emission is proportional to the inverse square of the holes mass; therefore, the smaller a hole gets the faster and faster it emits the Hawking radiation. It leads to a runaway procedure; what happens whenever the hole gets very tiny is not clear; quantum theory seems to point out that some kind of "remnant" may be left behind after the hole has emitted away all of its mass-energy.

   Related Questions in Physics

  • Q : Plasma globe AD advantages and

    advantages and disadvantages of a plasma globe

  • Q : Problem on Adiabatic law When air is

    When air is compressed adiabatically the law connecting the absolute temperature T and the pressure P is of the form T = A.Pn where A and N are constants. Show by drawing a suitable linear graph that the experimental dat

  • Q : Explain Null experiment Null

    Null experiment: The experiment which, after being performed, yields no outcome. The null experiments are just as significant as non-null experiments; when current theory predicts an observable result (or predicts there must be no observable result),

  • Q : Conservation laws and illustrations of

    Explain Conservation laws and illustrations of conservation laws (Conservation of mass-energy, electric charge, linear momentum and angular momentum) ? Conservation laws: The law which states that,

  • Q : Problem on Orbit cycle Calculate the

    Calculate the hot and cold temperature after 25 orbits. Assume a 100kg spherical spacecraft made of aluminum. Assume that the spacecraft is in an equatorial orbit. How is calculation 1 different for a spacecraft in a 90 degree (polar) orbit?

  • Q : Define Noether theorem Noether theorem

    Noether theorem (Noether): A theorem that explains that symmetries are what gives rise to conserved quantities. For example, the translational symmetry (that is the fact that the laws of physics work the same in all positions) gives r

  • Q : Semiconductors and magnetism I need

    I need well-explained answers on the questions in attached documents

  • Q : Magnetism what's the unit of Curie

    what's the unit of Curie constant and how to calculate Bohr magneton from the plot of 1/Khi vs Temperature(K)?

  • Q : Explain Chronology protection conjecture

    Chronology protection conjecture (S.W. Hawking): The notion that the formation of any closed time like curve will (automatically) involuntarily be destroyed by the quantum fluctuations as soon as it is made. In another words, the quan

  • Q : Report on Radiobiology for Travel Space

    I have a problem in wirting a report on Radiobiology for Travel Space.  Can someone provide me a complete report on the above topic.