--%>

Explain Hawking radiation

Hawking radiation (S.W. Hawking; 1973): The theory which black holes emit radiation similar to any other hot body. The virtual particle-antiparticle pairs are continuously being made in supposedly empty space. Infrequently, a pair will be made just exterior to the event horizon of a black hole. There are three possibilities as:

•    Both particles are imprisoned by the hole;
•    Both particles flee the hole;
•    One particle flees while another is captured.

The first two situations are straightforward; the virtual particle-antiparticle pair recombines and returns their energy back to the void through the uncertainty principle.

This is the third situation which interests us. In this situation, one of the particles has escaped (and is speeding away to the infinity), whereas the other has been imprisoned by the hole. The escape becomes real and can now be noticed by distant observers. However the captured particle is still virtual; since of this, it has to restore conservation of energy by conveying itself a negative mass-energy. As the hole has absorbed it, the hole loses mass and therefore appears to shrink. From a distance, it comes out as if the hole has released a particle and diminished in mass.

The rate of power emission is proportional to the inverse square of the holes mass; therefore, the smaller a hole gets the faster and faster it emits the Hawking radiation. It leads to a runaway procedure; what happens whenever the hole gets very tiny is not clear; quantum theory seems to point out that some kind of "remnant" may be left behind after the hole has emitted away all of its mass-energy.

   Related Questions in Physics

  • Q : Characteristics of electronics what is

    what is the characteristics of electronics ?

  • Q : Explain Fizeau method Fizeau method (A.

    Fizeau method (A. Fizeau, 1851): One of the primary truthfully relativistic experiments intended to compute the speed of light. Light is passed via a spinning cog-wheel driven by running water, is reflected off a far-away mirror, and

  • Q : What is No-hair conjecture No-hair

    No-hair conjecture (1960s): The conjecture (confirmed in the 1970s and 1980s) in general relativity that a black hole has merely three salient external characteristics: angular momentum, mass, and electric charge. All the other proper

  • Q : Define Metre or SI unit of length Metre

    Metre: meter; m: The basic SI unit of length, stated as the length of the path traveled by light in vacuum throughout a period of 1/299 792 458 s.

  • Q : Define Doppler Effect Doppler Effect

    Doppler Effect (C.J. Doppler): The waves emitted by a moving object as received by an observer will be blue shifted (compressed) when approaching, redshifted (that is, elongated) if receding. This takes place both in sound and also el

  • Q : Define Carnots theorem Carnot's theorem

    Carnot's theorem (S. Carnot): The theorem that states that no engine operating between the two temperatures can be more proficient than a reversible engine.

  • Q : What is Farad or SI unit of capacitance

    What is Farad or SI unit of capacitance? Farad: F (after M. Faraday, 1791-1867): The derived SI unit of the capacitance stated as the capacitance in a capacitor that, when charged to 1 C, contains

  • Q : Define Weber or SI unit of magnetic flux

    Weber: Wb (after W. Weber, 1804-1891): The derived SI unit of magnetic flux equivalent to the flux that, connecting a circuit of one turn, generates in it an electromotive force of 1 V as it is decreased to zero at a uniform rate in a period of 1 s; i

  • Q : Define Occams razor or Ockhams razor

    Occam's [or Ockham's] razor (William of Occam [or Ockham]; c. 1340): It is the suggestion that the simpler a theory is the better. When two theories forecast the phenomena to the similar accuracy, then the one that is simpler is the better one. Furthe

  • Q : Define Tesla or SI unit of the magnetic

    Tesla: T (after N. Tesla, 1870-1943): The derived SI unit of the magnetic flux density stated as the magnetic flux density of a magnetic flux of 1 Wb via an area of 1 m2; it therefore has units of Wb/m2.