--%>

Explain Hawking radiation

Hawking radiation (S.W. Hawking; 1973): The theory which black holes emit radiation similar to any other hot body. The virtual particle-antiparticle pairs are continuously being made in supposedly empty space. Infrequently, a pair will be made just exterior to the event horizon of a black hole. There are three possibilities as:

•    Both particles are imprisoned by the hole;
•    Both particles flee the hole;
•    One particle flees while another is captured.

The first two situations are straightforward; the virtual particle-antiparticle pair recombines and returns their energy back to the void through the uncertainty principle.

This is the third situation which interests us. In this situation, one of the particles has escaped (and is speeding away to the infinity), whereas the other has been imprisoned by the hole. The escape becomes real and can now be noticed by distant observers. However the captured particle is still virtual; since of this, it has to restore conservation of energy by conveying itself a negative mass-energy. As the hole has absorbed it, the hole loses mass and therefore appears to shrink. From a distance, it comes out as if the hole has released a particle and diminished in mass.

The rate of power emission is proportional to the inverse square of the holes mass; therefore, the smaller a hole gets the faster and faster it emits the Hawking radiation. It leads to a runaway procedure; what happens whenever the hole gets very tiny is not clear; quantum theory seems to point out that some kind of "remnant" may be left behind after the hole has emitted away all of its mass-energy.

   Related Questions in Physics

  • Q : Explain the cause of Brownian motion

    Briefly define or explain the cause of Brownian motion?

  • Q : Define Stefan-Boltzmann constant

    Stefan-Boltzmann constant: sigma (Stefan, L. Boltzmann): The constant of proportionality exist in the Stefan-Boltzmann law. It is equivalent to 5.6697 x 10-8 W/m2/K4.

  • Q : What is Hubble constant Hubble constant

    Hubble constant: H0 (E.P. Hubble; 1925): The constant that determines the relationship among the distance to a galaxy and its velocity of recession due to the growth of the Universe. As the Universe is self-gravitating, it is not trut

  • Q : Explain Photoelectric effect

    Photoelectric effect: An effect described by A. Einstein that demonstrates that light seems to be made up of particles, or photons. The light can excite electrons (termed as photoelectrons in this context) to be ejected from the metal. Light with a fr

  • Q : Explain Einstein field equation

    Einstein field equation: The cornerstone of Einstein's general theory of relativity, associating the gravitational tensor G to the stress-energy tensor T by the simple equation: G = 8 pi T<

  • Q : Define Watt or SI unit of power Watt: W

    Watt: W (after J. Watt, 1736-1819): The derived SI unit of power, stated as a power of 1 J acting over the period of 1 s; it therefore has the units of J/s.

  • Q : Define Lumen or SI unit of luminous flux

    Lumen: lm: The derived SI unit of luminous flux, stated as the luminous flux produced by a uniform point source of 1 cd releasing its luminous energy over a solid angle of 1 sr; it therefore has units of cd sr.

  • Q : What is Hooke law Hooke's law (R.

    Hooke's law (R. Hooke): The stress exerted to any solid is proportional to the strain it generates within the elastic limit for that solid. The constant of that proportionality is the Young modulus of elasticity for that material.

  • Q : Negative mass defect State is it

    State is it possible that the nucleus consists of negative mass defect?

  • Q : Developing an algorithm to remove noise

    sir, Would you please help me to develop an algorithm to reduce noise and to detect weak signals under water using Green's function?