--%>

Explain group 15 elements.

The various elements of this group differ from one another in their chemical reactivity. Nitrogen differs from the rest of the members of the group due to its smaller size, high electronegativity, high ionization enthalpy and non-availability of d-orbitals. Nitrogen is chemically comparatively less reactive. It is because of high stability of its molecule, N2 in which the two nitrogen atoms are linked by triple bond (N ≡ N) and thus, possess high bond strength (941.4 kJ mol-1).


Among the elements of this group only nitrogen has a unique ability to form p π-p π multiple bonds with itself as well as with carbon oxygen. The multiple bonding in nitrogen occurs due to its small size. Nitrogen, thus, forms a diatomic molecule, N2. On the other hand, phosphorus, arsenic and antimony form tetrahedral molecules in their elemental state with formula E4. Each P atom is linked to three other atoms with P - P - P bond angle equal to 60°. Though phosphorus and heavier members of the family do not form p π-p πmultiple bonds easily, yet the multiple bonding of the type d π-p π can readily occur in these elements. This type of bonding is prominent for the phosphorus as is reflected in the formation of compounds such as POX3RN = PX2R3P = O or R3P = CH2 (R = alkylgroup).

Phosphorus and arsenic can form d π-p π bond also with transition metals their compounds like P(C2H3) and As(C6H5)3 an actas ligands. Recently, a few compounds of phosphorus and arsenic having multiple bonding like P = C, P ≡ C, P = N, P = P and As = Asgroups have been synthesized.

The common chemical characteristics of group 15 elements are discussed below:

Reactivity for hydrogen: the elements of group 15 form hydrides having the general formula EH3. All these are covalent in nature. These hydrides are listed below:

66_Group 15.png 

Reactivity towards halogen

All the elements of group 15 form two series of halides, i.e. trihalides and pentahalides of the type EX3 and EX5.

Nitrogen does not form pentahalides because of non-availability of the d-orbitals in its valence shell. Penta-halides are more covalent than trihalides. All these trihalides of these elements except those of nitrogen are stable. In case of nitrogen simply NF3 is known to be stable. The trihalides except BiF3 are predominantly covalent in character.

   Related Questions in Chemistry

  • Q : Dipole moment direction for the methanol

    Briefly describe the dipole moment direction for the methanol?

  • Q : Neutralisation of phosphorous acids

    Provide solution of this question. To neutralise completely 20 mL of 0.1 M aqueous solution of phosphorous acid (H3 PO3) the volume of 0.1 M aqueous KOH solution required is: (a) 40 mL (b) 20 mL (c) 10 mL (d) 60 mL

  • Q : How can enzymes act as catalyst?

    Enzymes are complex proteinous substances, produced by living bodies, such as act as catalysis in the physiological reactions. The enzymes are, also called biochemical catalysts and the phenomenon is known as bio-chemical catalysis because numerous reactions that occur the bodies of animals and p

  • Q : PH of an Alkyl Halide Briefly state the

    Briefly state the pH of an Alkyl Halide?

  • Q : Kinds of insulators Describe all the

    Describe all the kinds of insulators which are present?

  • Q : Describe Point Groups. For any

    For any symmetric object there is a set of symmetry operations that, together, constitute a mathematical group, called a point group.It is clear from the examples that most molecules have several elements of symmetry. The H2O

  • Q : Problem on relative volatility In

    In vapor-liquid equilibrium the relative volatility αij is defined to be the ratio of the separation or K factor for species i to that for species j, that is,  αij = Ki/Kj

  • Q : Maximum vapour pressure Provide

    Provide solution of this question. Which solution will show the maximum vapour pressure at 300 K: (a)1MC12H22O11 (b)1M CH3 COOH (c) 1MNacl2 (d)1MNACl

  • Q : Units of Measurement Unit of

    Unit of measurement- These are also some systems for units:      (1) C.G.S.

  • Q : Tetrahedral holes In zinc blende

    In zinc blende structure, zinc atom fill up:(a) All octahedral holes  (b) All tetrahedral holes  (c) Half number of octahedral holes  (d) Half number of tetrahedral holesAnswer: (d) In zinc blende (ZnS