--%>

Explain group 15 elements.

The various elements of this group differ from one another in their chemical reactivity. Nitrogen differs from the rest of the members of the group due to its smaller size, high electronegativity, high ionization enthalpy and non-availability of d-orbitals. Nitrogen is chemically comparatively less reactive. It is because of high stability of its molecule, N2 in which the two nitrogen atoms are linked by triple bond (N ≡ N) and thus, possess high bond strength (941.4 kJ mol-1).


Among the elements of this group only nitrogen has a unique ability to form p π-p π multiple bonds with itself as well as with carbon oxygen. The multiple bonding in nitrogen occurs due to its small size. Nitrogen, thus, forms a diatomic molecule, N2. On the other hand, phosphorus, arsenic and antimony form tetrahedral molecules in their elemental state with formula E4. Each P atom is linked to three other atoms with P - P - P bond angle equal to 60°. Though phosphorus and heavier members of the family do not form p π-p πmultiple bonds easily, yet the multiple bonding of the type d π-p π can readily occur in these elements. This type of bonding is prominent for the phosphorus as is reflected in the formation of compounds such as POX3RN = PX2R3P = O or R3P = CH2 (R = alkylgroup).

Phosphorus and arsenic can form d π-p π bond also with transition metals their compounds like P(C2H3) and As(C6H5)3 an actas ligands. Recently, a few compounds of phosphorus and arsenic having multiple bonding like P = C, P ≡ C, P = N, P = P and As = Asgroups have been synthesized.

The common chemical characteristics of group 15 elements are discussed below:

Reactivity for hydrogen: the elements of group 15 form hydrides having the general formula EH3. All these are covalent in nature. These hydrides are listed below:

66_Group 15.png 

Reactivity towards halogen

All the elements of group 15 form two series of halides, i.e. trihalides and pentahalides of the type EX3 and EX5.

Nitrogen does not form pentahalides because of non-availability of the d-orbitals in its valence shell. Penta-halides are more covalent than trihalides. All these trihalides of these elements except those of nitrogen are stable. In case of nitrogen simply NF3 is known to be stable. The trihalides except BiF3 are predominantly covalent in character.

   Related Questions in Chemistry

  • Q : Freezing point of equimolal aqueous

    The freezing point of equi-molal aqueous solution will be maximum for:            (a) C6H5NH3+Cl-(aniline hydrochloride)  (b) Ca(NO3

  • Q : Value of molar solution Select the

    Select the right answer of the question. Molar solution contains: (a)1000g of solute (b)1000g of solvent (c)1 litre of solvent (d)1 litre of solution

  • Q : Describe Point Groups. For any

    For any symmetric object there is a set of symmetry operations that, together, constitute a mathematical group, called a point group.It is clear from the examples that most molecules have several elements of symmetry. The H2O

  • Q : Eutectic Formation In some two

    In some two component, solid liquid systems, a eutectic mixture forms.Consider, now a two component system at some fixed pressure, where the temperature range treated is such as to include formation of one or more solid phases. A simple behavior is shown b

  • Q : Biodegradable polymers what are the

    what are the examples of biodegradable polymers

  • Q : Cons of eating organic foods Illustrate

    Illustrate the cons of eating organic foods?

  • Q : Thermodynamics I) Sulphur dioxide (SO2)

    I) Sulphur dioxide (SO2) with a volumetric flow rate 5000cm3/s at 1 bar and 1000C is mixed with a second SO2 stream flowing at 2500cm3/s at 2 bar and 200C. The process occurs at steady state. You may assume ideal gas behaviour. For SO2 take the heat capacity at constant pressure to be CP/R = 3.267

  • Q : Number of mlecules in methane Can

    Can someone please help me in getting through this problem. The total number of molecules in 16 gm of methane will be: (i) 3.1 x 1023 (ii) 6.02 x 1023 (iii) 16/6.02 x 1023 (iv) 16/3.0 x 1023

  • Q : Water under pressure problem-henry law

    Can someone help me in going through this problem. The statement “When 0.003 moles of a gas are dissolved in 900 gm of water under a pressure of 1 atm, 0.006 moles will be dissolved under the pressure of 2 atm", signfies: (a)

  • Q : Modes of concentration Which of the

    Which of the given modes of expressing concentration is fully independent of temperature: (1) Molarity (2) Molality (3) Formality (4) Normality Choose the right answer from above.