--%>

Explain gels and its various categories.

Certain sols have the property of setting to a semi-solid, jelly-like form by enclosing the entire amount of liquid within itself when they are present at high concentrations. This process is called gelation and colloidal systems with jelly-like appearance are known as gels. Some common examples of gels are: gelatin, gum Arabic, silicic acid, processed cheese, ferric hydroxide etc.


Gels possess rigid structures which are formed when the particles of dispersed phase get interlocked and create a lose network frame. The particles of dispersion medium are trapped within the loose framework.  The degree of rigidity of structure varies from substance to substance. Thus, gel represents a liquid-solid system, i.e. a liquid immersed in a solid.

When the gels are allowed to stand for long time, they give out small quantity of trapped liquid which accumulates on its surface. This action of gels is known as syneresis or weeping.

Gels are divided into two classes i.e. elastic gels and non-elastic gels. The characteristic differences between the two are tabulated below:

Elastic gels

Non-elastic gels

These gels change to solid mass on dehydration which can be changed back to original form by addition of water followed by warming.

These gels change to solid mass on dehydration which cannot be changed back to original form by addition of water and warming.

The absorb water when placed in it with simultaneous swelling of gel body. This phenomenon is called imbibitions.

These do not imbibe.


Some gels such as silica, gelatin, ferric phosphate, etc, liquefy on mechanical shaking and change to sols losing their semi-solid gel character. The sol on scattering changes back to the gel. This phenomenon is known as thixotropy.

   Related Questions in Chemistry

  • Q : Electron Spin The total angular

    The total angular momentum of an atom includes an electron spin component as well as an orbital component.The orbital motion of each electron of an atom contributes to the angular momentum of the atom, as described earlier. An additional

  • Q : Difference in Mendeleevs table and

    Briefly describe the difference in the Mendeleev’s table and modern periodic table?

  • Q : Anti-aromatic and the non-aromatic

    What is main difference among anti-aromatic and the non-aromatic compounds?

  • Q : Molality of glucose Help me to go

    Help me to go through this problem. Molecular weight of glucose is 180. A solution of glucose which contains 18 gms per litre is : (a) 2 molal (b) 1 molal (c) 0.1 molal (d)18 molal

  • Q : PH of an Alkyl Halide Briefly state the

    Briefly state the pH of an Alkyl Halide?

  • Q : Questuion associated with colligative

    Provide solution of this question. Which of the following is a colligative property: (a) Surface tension (b) Viscosity (c) Osmotic pressure (d) Optical rotation

  • Q : Question of vapour pressure Choose the

    Choose the right answer from following. Vapour pressure of a solution is: (a) Directly proportional to the mole fraction of the solvent (b) Inversely proportional to the mole fraction of the solute (c) Inversely proportional to the mole fraction of the solvent (d

  • Q : Molarity of Nacl solution When 5.85 g

    When 5.85 g of NaCl (having molecular weight 58.5) is dissolved in water and the solution is prepared to 0.5 litres, the molarity of the solution is: (i) 0.2 (ii) 0.4 (iii) 1.0 (iv) 0.1

  • Q : Problem on decinormal Select the right

    Select the right answer of the question. How much water is required to dilute 10 ml of 10 N hydrochloric acid to make it exactly decinormal (0.1 N): (a) 990 ml (b) 1000 ml (c) 1010 ml (d) 100 ml

  • Q : Volume hydrogen peroxide Choose the

    Choose the right answer from following. The normality of 10 lit. volume hydrogen peroxide is: (a) 0.176 (b) 3.52 (c) 1.78 (d) 0.88 (e)17.8