--%>

Explain gels and its various categories.

Certain sols have the property of setting to a semi-solid, jelly-like form by enclosing the entire amount of liquid within itself when they are present at high concentrations. This process is called gelation and colloidal systems with jelly-like appearance are known as gels. Some common examples of gels are: gelatin, gum Arabic, silicic acid, processed cheese, ferric hydroxide etc.


Gels possess rigid structures which are formed when the particles of dispersed phase get interlocked and create a lose network frame. The particles of dispersion medium are trapped within the loose framework.  The degree of rigidity of structure varies from substance to substance. Thus, gel represents a liquid-solid system, i.e. a liquid immersed in a solid.

When the gels are allowed to stand for long time, they give out small quantity of trapped liquid which accumulates on its surface. This action of gels is known as syneresis or weeping.

Gels are divided into two classes i.e. elastic gels and non-elastic gels. The characteristic differences between the two are tabulated below:

Elastic gels

Non-elastic gels

These gels change to solid mass on dehydration which can be changed back to original form by addition of water followed by warming.

These gels change to solid mass on dehydration which cannot be changed back to original form by addition of water and warming.

The absorb water when placed in it with simultaneous swelling of gel body. This phenomenon is called imbibitions.

These do not imbibe.


Some gels such as silica, gelatin, ferric phosphate, etc, liquefy on mechanical shaking and change to sols losing their semi-solid gel character. The sol on scattering changes back to the gel. This phenomenon is known as thixotropy.

   Related Questions in Chemistry

  • Q : What is Elevation in boiling point? The

    The boiling of a liquid may be defused by the temperature at which its vapour pressure which is equal to atmospheric pressure. The effect of addition in a non-volatile solute on the boiling point shown and its solution containing non-volatile solute with tempe

  • Q : M ive me answer of this question. When

    ive me answer of this question. When mercuric iodide is added to the aqueous solution of potassium iodide, the: (a) Freezing point is raised (b) Freezing point is lowered (c) Freezing point does not change (d) Boiling point does not change

  • Q : Organic and inorganic substances living

    living beings are made up of organic and inorganic substances.according to their complexity of their molecules how can ach of these substances be classified?

  • Q : What are emulsions?Describe its

    Emulsions are colloidal solutions in which disperse phase as well as dispersion medium is both liquids. Emulsions can be broadly classified into two types: (i) Oil in water (O/W type) emulsions: in this type of emulsions, oil acts disperse phase and water acts

  • Q : Problem on partial pressure i) Show

    i) Show that the equilibrium constant Kp for the reaction CaCo3(s) ↔ CaO(s) +CO2(g)is about unity (i.e. = 1.0) at 895 °C.ii) If two grams of calcium carbonate are pl

  • Q : Calculating number of moles from

    Choose the right answer from following. If 0.50 mol of CaCl2 is mixed with 0.20 mol of Na3PO4, the maximum number of moles of Ca3 (PO2)2 which can be formed: (a) 0.70 (b) 0.50 (c) 0.20 (d) 0.10

  • Q : Describe First Order Rate Equation The

    The integrated forms of the first order rate equations are conveniently used to compare concentration time results with this rate equation. Rate equations show the dependence of the rate of the reaction on concentration can be integrated to give expressions fo

  • Q : What is Ideal Mixtures Ideal mixing

    Ideal mixing properties can be recognized in the formation of an ideal gas mixture from ideal gases. Consider the formation of a mixture of gases i.e. a gaseous solution, from two mixtures of pure gases. A useful characterization of an ideal mixture, or soluti

  • Q : Molarity of the final mixture Can

    Can someone please help me in getting through this problem. Two solutions of a substance (that is, non electrolyte) are mixed in the given manner 480 ml of 1.5M first solution + 520 ml of 1.2M second solution. Determine the molarity of the final mixture

  • Q : Mole fraction and Molality Select the

    Select the right answer of the following question.What does not change on changing temperature : (a) Mole fraction (b) Normality (c) Molality (d) None of these