--%>

Explain gels and its various categories.

Certain sols have the property of setting to a semi-solid, jelly-like form by enclosing the entire amount of liquid within itself when they are present at high concentrations. This process is called gelation and colloidal systems with jelly-like appearance are known as gels. Some common examples of gels are: gelatin, gum Arabic, silicic acid, processed cheese, ferric hydroxide etc.


Gels possess rigid structures which are formed when the particles of dispersed phase get interlocked and create a lose network frame. The particles of dispersion medium are trapped within the loose framework.  The degree of rigidity of structure varies from substance to substance. Thus, gel represents a liquid-solid system, i.e. a liquid immersed in a solid.

When the gels are allowed to stand for long time, they give out small quantity of trapped liquid which accumulates on its surface. This action of gels is known as syneresis or weeping.

Gels are divided into two classes i.e. elastic gels and non-elastic gels. The characteristic differences between the two are tabulated below:

Elastic gels

Non-elastic gels

These gels change to solid mass on dehydration which can be changed back to original form by addition of water followed by warming.

These gels change to solid mass on dehydration which cannot be changed back to original form by addition of water and warming.

The absorb water when placed in it with simultaneous swelling of gel body. This phenomenon is called imbibitions.

These do not imbibe.


Some gels such as silica, gelatin, ferric phosphate, etc, liquefy on mechanical shaking and change to sols losing their semi-solid gel character. The sol on scattering changes back to the gel. This phenomenon is known as thixotropy.

   Related Questions in Chemistry

  • Q : Finding Molarity of final mixture Can

    Can someone help me in finding out the right answer. 25ml of 3.0 MHNO3 are mixed with 75ml of 4.0 MHNO3. If the volumes are adding up the molarnity of the final mixture would be: (a) 3.25M (b) 4.0M (c) 3.75M (d) 3.50M

  • Q : Mole fraction of water and ethanol Give

    Give me answer of this question. A solution contains 1 mole of water and 4 mole of ethanol. The mole fraction of water and ethanol will be: (a) 0.2 water + 0.8 ethanol (b) 0.4 water + 0.6 ethanol (c) 0.6 water + 0.8 ethanol (d) 0.8 water + 0.2 ethanol

  • Q : What is heat capacity and how to

    The temperature reliance of internal energy and enthalpy depends on the heat capacities at constant volume and constant pressure. The internal energy and enthalpy of chemical systems and the energy changes that accompany chemical reactions depend on the

  • Q : Neutralization of sodium hydroxide How

    How much of NaOH is needed to neutralise 1500 cm3 of 0.1N HCl (given = At. wt. of Na =23): (i) 4 g  (ii) 6 g (iii) 40 g  (iv) 60 g

  • Q : Solution density of water is 1g/mL.The

    density of water is 1g/mL.The concentration of water in mol/litre is

  • Q : Describe the properties of the

    Briefly describe the properties of the carbohydrates?

  • Q : Vapour pressure of the pure hydrocarbons

    Give me answer of this question. A solution has a 1 : 4 mole ratio of pentane to hexane. The vapour pressure of the pure hydrocarbons at 20°C are 440 mmHg for pentane and 120 mmHg for hexane. The mole fraction of pentane in the vapour phase would be: (a) 0.549 (b)

  • Q : Chemistry brief discription of relative

    brief discription of relative lowering of vapour pressure

  • Q : Pressure Phase Diagrams The occurrence

    The occurrence of different phases of a one component system can be shown on a pressure temperature. The phases present in a one line system at various temperatures can be conveniently presented on a P- versus-T diagram. An example is pro