--%>

Explain gels and its various categories.

Certain sols have the property of setting to a semi-solid, jelly-like form by enclosing the entire amount of liquid within itself when they are present at high concentrations. This process is called gelation and colloidal systems with jelly-like appearance are known as gels. Some common examples of gels are: gelatin, gum Arabic, silicic acid, processed cheese, ferric hydroxide etc.


Gels possess rigid structures which are formed when the particles of dispersed phase get interlocked and create a lose network frame. The particles of dispersion medium are trapped within the loose framework.  The degree of rigidity of structure varies from substance to substance. Thus, gel represents a liquid-solid system, i.e. a liquid immersed in a solid.

When the gels are allowed to stand for long time, they give out small quantity of trapped liquid which accumulates on its surface. This action of gels is known as syneresis or weeping.

Gels are divided into two classes i.e. elastic gels and non-elastic gels. The characteristic differences between the two are tabulated below:

Elastic gels

Non-elastic gels

These gels change to solid mass on dehydration which can be changed back to original form by addition of water followed by warming.

These gels change to solid mass on dehydration which cannot be changed back to original form by addition of water and warming.

The absorb water when placed in it with simultaneous swelling of gel body. This phenomenon is called imbibitions.

These do not imbibe.


Some gels such as silica, gelatin, ferric phosphate, etc, liquefy on mechanical shaking and change to sols losing their semi-solid gel character. The sol on scattering changes back to the gel. This phenomenon is known as thixotropy.

   Related Questions in Chemistry

  • Q : Question related to molarity Help me to

    Help me to go through this problem. Molarity of a solution containing 1g NaOH in 250ml of solution: (a) 0.1M (b) 1M (c) 0.01M (d) 0.001M

  • Q : What are haloalkanes and haloarenes and

    Alkyl halides or haloalkanes are the compounds in which a halogen is bonded to an alkyl group. They have the general formula RX (where R is alkyl grou

  • Q : Wavelengths which the human eye can see

    Briefly state the wavelengths which the human eye can see?

  • Q : What are Vander Waal's Radii? Vander

    Vander Waal's radii can be assigned to the atoms of molecules on the basis of the closeness of approach of these atoms in crystalline substances. Diffraction studies of crystals give information about hoe molecules can approach each other and can pack

  • Q : Molarity of sodium hydroxide Can

    Can someone please help me in getting through this problem. Determine the molarity of a solution having 5g of sodium hydroxide in 250ml  solution is: (i) 0.5  (ii) 1.0  (iii) 2.0   (d) 0.1Answer: The right answer i

  • Q : Question based on normality Provide

    Provide solution of this question. A 5 molar solution of H2SO4 is diluted from 1 litre to 10 litres. What is the normality of the solution : (a) 0.25 N (b) 1 N (c) 2 N (d) 7 N

  • Q : Strength of any solution Give me answer

    Give me answer of this question. A solution contains 1.2046 x 1024 hydrochloric acid molecules in one dm3 of the solution. The strength of the solution is: (a) 6 N (b) 2 N (c) 4 N (d) 8 N

  • Q : What type of bond does HCl encompass

    What type of bond does HCl encompass? Describe briefly?

  • Q : Question based on lowering of vapour

    Choose the right answer from following. The relative lowering of vapour pressure produced by dissolving 71.5 g of a substance in 1000 g of water is 0.00713. The molecular weight of the substance will be:  (a) 18.0 (b) 342 (c) 60 (d) 180

  • Q : Problem on melting of ice A) It has

    A) It has been suggested that the surface melting of ice plays a role in enabling speed skaters to achieve peak performance. Carry out the following calculation to test this hypothesis. Suppose that the width of the skate in contact with the ice has been reduced by sh