--%>

Explain gels and its various categories.

Certain sols have the property of setting to a semi-solid, jelly-like form by enclosing the entire amount of liquid within itself when they are present at high concentrations. This process is called gelation and colloidal systems with jelly-like appearance are known as gels. Some common examples of gels are: gelatin, gum Arabic, silicic acid, processed cheese, ferric hydroxide etc.


Gels possess rigid structures which are formed when the particles of dispersed phase get interlocked and create a lose network frame. The particles of dispersion medium are trapped within the loose framework.  The degree of rigidity of structure varies from substance to substance. Thus, gel represents a liquid-solid system, i.e. a liquid immersed in a solid.

When the gels are allowed to stand for long time, they give out small quantity of trapped liquid which accumulates on its surface. This action of gels is known as syneresis or weeping.

Gels are divided into two classes i.e. elastic gels and non-elastic gels. The characteristic differences between the two are tabulated below:

Elastic gels

Non-elastic gels

These gels change to solid mass on dehydration which can be changed back to original form by addition of water followed by warming.

These gels change to solid mass on dehydration which cannot be changed back to original form by addition of water and warming.

The absorb water when placed in it with simultaneous swelling of gel body. This phenomenon is called imbibitions.

These do not imbibe.


Some gels such as silica, gelatin, ferric phosphate, etc, liquefy on mechanical shaking and change to sols losing their semi-solid gel character. The sol on scattering changes back to the gel. This phenomenon is known as thixotropy.

   Related Questions in Chemistry

  • Q : Molarity of Sodium hydroxide Select the

    Select the right answer of the question. Molarity of 4% NaOH solution is : (a) 0.1M (b) 0.5M (c) 0.01M (d) 0.05M

  • Q : Calculating weight of acid Give me

    Give me answer of this question. The formula weight of H2SO4 is 98. The weight of the acid in 400mi of solution is: (a)2.45g (b) 3.92g (c) 4.90g (d) 9.8g

  • Q : Benefits of soapy detergents over the

    What are the benefits of soapy detergents over the soap less detergents? Briefly state the benefits?

  • Q : Organic and inorganic substances living

    living beings are made up of organic and inorganic substances.according to their complexity of their molecules how can ach of these substances be classified?

  • Q : Molality of a glucose solution What

    What will be the molality of a solution containing 18g of glucose (having mol. wt. = 180) dissolved in 500g of water: (i) 1m  (ii) 0.5m  (iii) 0.2m  (iv) 2m

  • Q : Describe the function of the

    Briefly describe the function of the monosaccharide?

  • Q : Calculating number of moles from

    Choose the right answer from following. If 0.50 mol of CaCl2 is mixed with 0.20 mol of Na3PO4, the maximum number of moles of Ca3 (PO2)2 which can be formed: (a) 0.70 (b) 0.50 (c) 0.20 (d) 0.10

  • Q : Concentration of urea Help me to go

    Help me to go through this problem. 6.02x 1020 molecules of urea are present in 100 ml of its solution. The concentration of urea solution is: (a) 0.02 M (b) 0.01 M (c) 0.001 M (d) 0.1 M (Avogadro constant, N4= 6.02x 1023mol -1)<

  • Q : What are ion selective electrodes? Ion

    Ion Selective Electrodes An ion selective membrane can be used to form an electrochemical cell whose emf depends on the concentration of that ion. Before we proceed to an important application of emf measurements, brie

  • Q : Problem based on mole concept Choose

    Choose the right answer from following. An aqueous solution of glucose is 10% in strength. The volume in which mole of it is dissolved will be : (a) 18 litre (b) 9 litre (c) 0.9 litre (d) 1.8 litre