--%>

Explain Factorisation by trial division

Factorisation by trial division: The essential idea of factorisation by trial division is straightforward. Let n be a positive integer. We know that n is either prime or has a prime divisor less than or equal to √n. Therefore, if we divide n in turn by the primes 2, 3, 5,..., going possibly as far as [√n], we will either encounter a prime factor of n or otherwise be able to infer that n is prime. Repeating this process as often as necessary we will be able to nd all the prime
factors of n.

We can re fine this idea a little. If we fi nd on division by the prime p that p is a factor of n, then we can recommence trial divisions, but now dividing into the integer n/p rather than n. Also, the divisions can start with the prime p rather than restarting with 2, since we know that n, and hence n/p, has no prime factors smaller than p.

Further, we now need only carry out trial divisions by primes up to [√n/p]. Similarly for later steps.

An obvious difficulty with trial division is that we need either to store or to generate the primes up to [√n], and it may be better simply to divide by all the integers from 2 up to [√n], or, for example, by 2 and then all the odd numbers up to [√n].

Other improvements are possible too, but even with a few improvements the trial division algorithm is inefficient , and the algorithm is unsuitable for all but fairly small initial values of n.

Despite this, the trial division algorithm is in practical use. It is often used as a preliminary phase in a factorisation algorithm to nd the `small' prime factors of a number, and the remaining unfactorised part, containing all the `large' prime factors, is left to later phases.

Most numbers have some small prime factors. For example, it is not hard to show that about 88% of positive integers have a prime factor less than 100 and that about 91% have a prime factor less than 1000, and trial division will be good at finding these factors.

On the other hand, most numbers also have large prime factors. It can be shown (though not so easily) that a random positive integer n has a prime factor greater than √n with probability ln 2, or about 69% of the time, and of course if n is large, then trial division will not be of any help in nding such a factor.

   Related Questions in Mathematics

  • Q : Who had find Monte Carlo and finite

    Who had find Monte Carlo and finite differences of the binomial model?

  • Q : Properties for polynomial Specify the

    Specify the important properties for the polynomial.

  • Q : Law of iterated expectations for

     Prove the law of iterated expectations for continuous random variables. 2. Prove that the bounds in Chebyshev's theorem cannot be improved upon. I.e., provide a distribution that satisfies the bounds exactly for k ≥1, show that it satisfies the bounds exactly, and draw its PDF. T

  • Q : Formal logic It's a problem set, they

    It's a problem set, they are attached. it's related to Sider's book which is "Logic to philosophy" I attached the book too. I need it on feb22 but feb23 still work

  • Q : Competitive equilibrium 8. Halloween is

    8. Halloween is an old American tradition. Kids go out dressed in costume and neighbors give them candy when they come to the door. Spike and Cinderella are brother and sister. After a long night collecting candy, they sit down as examine what they have. Spike fi

  • Q : Containee problem For queries Q 1 and Q

    For queries Q1 and Q2, we say Q1 is containedin Q2, denoted Q1 C Q2, iff Q1(D) C Q2

  • Q : What is the probability that the film

    T.C.Fox, marketing director for Metro-Goldmine Motion Pictures, believes that the studio's upcoming release has a 60 percent chance of being a hit, a 25 percent chance of being a moderate success, and a 15 percent chance of being a flop. To test the accuracy of his op

  • Q : Use MS Excel to do the computations

    Select a dataset of your interest (preferably related to your company/job), containing one variable and atleast 100 data points. [Example: Annual profit figures of 100 companies for the last financial year]. Once you select the data, you should compute 4-5 summary sta

  • Q : Problem on inverse demand curves In

    In differentiated-goods duopoly business, with inverse demand curves: P1 = 10 – 5Q1 – 2Q2P2 = 10 – 5Q2 – 2Q1 and per unit costs for each and every firm equal to 1.<

  • Q : Problem on mixed-strategy equilibrium

    Assume three Offices (A, B, & C) in downtown,  simultaneously decide whether to situate in a new Building. The payoff matrix is illustrated below. What is (are) the pure stratgy Nash equilibrium (or equilibria) and mixed-strtegy equilibrium of the game?