--%>

Explain Factorisation by trial division

Factorisation by trial division: The essential idea of factorisation by trial division is straightforward. Let n be a positive integer. We know that n is either prime or has a prime divisor less than or equal to √n. Therefore, if we divide n in turn by the primes 2, 3, 5,..., going possibly as far as [√n], we will either encounter a prime factor of n or otherwise be able to infer that n is prime. Repeating this process as often as necessary we will be able to nd all the prime
factors of n.

We can re fine this idea a little. If we fi nd on division by the prime p that p is a factor of n, then we can recommence trial divisions, but now dividing into the integer n/p rather than n. Also, the divisions can start with the prime p rather than restarting with 2, since we know that n, and hence n/p, has no prime factors smaller than p.

Further, we now need only carry out trial divisions by primes up to [√n/p]. Similarly for later steps.

An obvious difficulty with trial division is that we need either to store or to generate the primes up to [√n], and it may be better simply to divide by all the integers from 2 up to [√n], or, for example, by 2 and then all the odd numbers up to [√n].

Other improvements are possible too, but even with a few improvements the trial division algorithm is inefficient , and the algorithm is unsuitable for all but fairly small initial values of n.

Despite this, the trial division algorithm is in practical use. It is often used as a preliminary phase in a factorisation algorithm to nd the `small' prime factors of a number, and the remaining unfactorised part, containing all the `large' prime factors, is left to later phases.

Most numbers have some small prime factors. For example, it is not hard to show that about 88% of positive integers have a prime factor less than 100 and that about 91% have a prime factor less than 1000, and trial division will be good at finding these factors.

On the other hand, most numbers also have large prime factors. It can be shown (though not so easily) that a random positive integer n has a prime factor greater than √n with probability ln 2, or about 69% of the time, and of course if n is large, then trial division will not be of any help in nding such a factor.

   Related Questions in Mathematics

  • Q : Explain Factorisation by Fermats method

    Factorisation by Fermat's method: This method, dating from 1643, depends on a simple and standard algebraic identity. Fermat's observation is that if we wish to nd two factors of n, it is enough if we can express n as the di fference of two squares.

  • Q : Test Please read the assignment

    Please read the assignment carefully and confirm only if you are 100% sure. Please go through below mentioned guidelines and penalties: • Your solution must be accurate and complete. • Please do not change Subject Title of the Email. • Penalty clause will be applied in case of delayed or plag

  • Q : Probability assignments 1. Smith keeps

    1. Smith keeps track of poor work. Often on afternoon it is 5%. If he checks 300 of 7500 instruments what is probability he will find less than 20substandard? 2. Realtors estimate that 23% of homes purchased in 2004 were considered investment properties. If a sample of 800 homes sold in 2

  • Q : Research Areas in Medical Mathematical

    Some Research Areas in Medical Mathematical Modelling:1. Modeling and numerical simulations of the nanometric aerosols in the lower portion of the bronchial tree. 2. Multiscale mathematical modeling of

  • Q : Who firstly discovered mathematical

    Who firstly discovered mathematical theory for random walks, that rediscovered later by Einstein?

  • Q : The mean of the sampling distribution

    1. Caterer determines that 87% of people who sampled the food thought it was delicious. A random sample of 144 out of population of 5000 taken. The 144 are asked to sample the food. If P-hat is the proportion saying that the food is delicious, what is the mean of the sampling distribution p-hat?<

  • Q : Problem on Maple (a) Solve the

    (a) Solve the following  by: (i) First reducing the system of first order differentiat equations to a second order differential equation. (ii) Decoupling the following linear system of equa

  • Q : How to calculate area of pyramid

    Calculate area of pyramid, prove equation?

  • Q : Formulating linear program of a

    A software company has a new product specifically designed for the lumber industry. The VP of marketing has been given a budget of $1,35,00to market the product over the quarter. She has decided that $35,000 of the budget will be spent promoting the product at the nat

  • Q : Explain trading of call options Explain

    Explain trading of call options.