--%>

Explain Factorisation by trial division

Factorisation by trial division: The essential idea of factorisation by trial division is straightforward. Let n be a positive integer. We know that n is either prime or has a prime divisor less than or equal to √n. Therefore, if we divide n in turn by the primes 2, 3, 5,..., going possibly as far as [√n], we will either encounter a prime factor of n or otherwise be able to infer that n is prime. Repeating this process as often as necessary we will be able to nd all the prime
factors of n.

We can re fine this idea a little. If we fi nd on division by the prime p that p is a factor of n, then we can recommence trial divisions, but now dividing into the integer n/p rather than n. Also, the divisions can start with the prime p rather than restarting with 2, since we know that n, and hence n/p, has no prime factors smaller than p.

Further, we now need only carry out trial divisions by primes up to [√n/p]. Similarly for later steps.

An obvious difficulty with trial division is that we need either to store or to generate the primes up to [√n], and it may be better simply to divide by all the integers from 2 up to [√n], or, for example, by 2 and then all the odd numbers up to [√n].

Other improvements are possible too, but even with a few improvements the trial division algorithm is inefficient , and the algorithm is unsuitable for all but fairly small initial values of n.

Despite this, the trial division algorithm is in practical use. It is often used as a preliminary phase in a factorisation algorithm to nd the `small' prime factors of a number, and the remaining unfactorised part, containing all the `large' prime factors, is left to later phases.

Most numbers have some small prime factors. For example, it is not hard to show that about 88% of positive integers have a prime factor less than 100 and that about 91% have a prime factor less than 1000, and trial division will be good at finding these factors.

On the other hand, most numbers also have large prime factors. It can be shown (though not so easily) that a random positive integer n has a prime factor greater than √n with probability ln 2, or about 69% of the time, and of course if n is large, then trial division will not be of any help in nding such a factor.

   Related Questions in Mathematics

  • Q : Abstract Boolean Algebra I. Boolean

    I. Boolean Algebra Define an abstract Boolean Algebra, B,  as follows:  The three operations are:  +   ( x + y addition) ( x y multiplic

  • Q : Mean and standard deviation of the data

    Below is the amount of rainfall (in cm) every month for the last 3 years in a particular location: 130 172 142 150 144 117 165 182 104 120 190 99 170 205 110 80 196 127 120 175

  • Q : Probability and Stochastic assignment

    Introduction to Probability and Stochastic Assignment 1: 1. Consider an experiment in which one of three boxes containing microchips is chosen at random and a microchip is randomly selected from the box.

  • Q : Competitive equilibrium 8. Halloween is

    8. Halloween is an old American tradition. Kids go out dressed in costume and neighbors give them candy when they come to the door. Spike and Cinderella are brother and sister. After a long night collecting candy, they sit down as examine what they have. Spike fi

  • Q : Define Well-formed formulas or Wffs

    Wffs (Well-formed formulas): These are defined inductively by the following clauses:    (i) If  P  is an n-ary predicate and  t1, …, tn are terms, then P(t1, …, t

  • Q : Mathematical Method for Engineers The

     The function is clearly undefined at , but despite all of this the function does have a limit as approaches 0. a) Use MATLAB and ezplot to sketch for , and use the zoom on facility to guess the . You need to include you M-file, outp

  • Q : How to calculate area of pyramid

    Calculate area of pyramid, prove equation?

  • Q : Abstract Algebra let a, b, c, d be

    let a, b, c, d be integers. Prove the following statements: (a) if a|b and b|c. (b) if a|b and ac|bd. (c) if d|a and d|b then d|(xa+yb) for any x, y EZ

  • Q : What is Big-O hierarchy The big-O

    The big-O hierarchy: A few basic facts about the big-O behaviour of some familiar functions are very important. Let p(n) be a polynomial in n (of any degree). Then logbn is O(p(n)) and p(n) is O(an<

  • Q : Explain Factorisation by trial division

    Factorisation by trial division: The essential idea of factorisation by trial division is straightforward. Let n be a positive integer. We know that n is either prime or has a prime divisor less than or equal to √n. Therefore, if we divide n in