--%>

Explain equilibrium and molecular distributions.

The equilibrium constant can be treated as a particular type of molecular distribution. Consider the simplest gas-phase reaction, one in which molecules of A are converted to molecules of B. the reaction, described by the equation

2090_equilibria.png 

Will proceed until a state of equilibrium is reached. Then, at a given temperature, there will be some ratio of the number of B molecules to the number of A molecules. Now we investigate what it is about the A and B molecules that determine the ratio of the numbers present in equilibrium. This simple, artificial example will show what molecular level factors operate to determine the position of a chemical equilibrium.

Consider the generalized patterns of energies of the states of the chemical species A and B in their standard states. The difference in the energies of the A and B states of lowest energy is εB0- εA0 = Δε0. This quantity is familiar as the molar quantity UB0 - UA0 = ΔU0, the difference in energy between 1 mol of A and 1 mol of B if all the molecules of both species are in their lowest possible energy states.

On a molecular basis, the question of the position of the equilibrium between A and B is phrased in this way. If a large number of molecules are allowed to equilibrate and distribute themselves throughout the energy level pattern of many as B molecules, i.e. occupy the B levels? The question is answered by application of the Boltzmann distribution expression.

Let NA0 be the number of molecules, which, at equilibrium, occupy the lowest energy level. This happens to be an A level. The total number of molecules in the A levels, indicated by Nam is given, according as

2304_equilibria1.png 

In a similar way the number of molecules NB distributed throughout the B levels is related to the number in the lowest-energy B states by

1068_equilibria2.png 

Since equilibrium is established between the distribution throughout the A and B states, the population of the lowest B state is related to the population of the lowest A state by the Boltzmann expression

2419_equilibria3.png 

2328_equilibria4.png 

The expressions for the population of B levels can now be rewritten as 

2040_equilibria5.png  

The equilibrium constant for the reaction of A to B might be expressed as the ration of the pressure or the concentration of B to A. both these terms will be dependent on, and proportional to, the number of moles or molecules of the two reagents. We can therefore write

1821_equilibria6.png 

The expressions for NB and NA can now be substituted to give

1730_equilibria7.png 

This result can be applied to any molecular transformation of the type 186_equilibria.png .

Notice that the formation of B is favored by ΔU0 values that are small or negative. This term is temperature independent (although it does enter the temperature dependent term = eΔε0/(RT)and is not determined by the pattern of energy levels. The formation of B is also favored by a large value of qB relative to that qA. Large partition function value result, according to the discussion, when many states are available to the molecules. Thus, the formation of B will be favored if the energy of the states of B are closely spaced and the number of states corresponding to these allowed energies is high.

The very simple example can be used to illustrate these general conclusions. The partition functions are very simply calculated as

708_equilibria8.png 

The equilibrium constant for the system can be calculated at the two temperatures of, say, 25and 1000°C. Equation can be used to give

K298 = e-1200/(8.314) (298) (3/2) = 0.92

K1273 = e-1200/(8.314) (1273) (3/2) = 1.34  

   Related Questions in Chemistry

  • Q : Molal elevation constant of water The

    The boiling point of 0.1 molal aqueous solution of urea is 100.18oC  at 1 atm. The molal elevation constant of water is: (a) 1.8    (b) 0.18   (c) 18    (d) 18.6Answer: (a) Kb

  • Q : Film Mass Transport Sulfur trioxide

    Sulfur trioxide (SO3) is manufactured by the gas-phase oxidation of SO2 over a platinum catalyst: SO2 + ½ O2 à SO3 The catalyst is a non-porous ext

  • Q : Molecular Symmetry Types The number of

    The number of molecular orbitals and molecular motions of each symmetry type can be deduced. Let us continue to use the C2v point group and the H2O molecule to illustrate how the procedure develop

  • Q : Mole fraction and Molality Select the

    Select the right answer of the following question.What does not change on changing temperature : (a) Mole fraction (b) Normality (c) Molality (d) None of these

  • Q : Macromolecules what are condensation

    what are condensation polymerization give in with 2 examples

  • Q : Procedure to judge that organic

    Describe briefly the procedure to judge that the given organic compound is pure or not?

  • Q : Molarity of sodium hydroxide Can

    Can someone please help me in getting through this problem. Determine the molarity of a solution having 5g of sodium hydroxide in 250ml  solution is: (i) 0.5  (ii) 1.0  (iii) 2.0   (d) 0.1Answer: The right answer i

  • Q : Define alum Illustrate alum?

    Illustrate alum?

  • Q : What are Vander Waal's Radii? Vander

    Vander Waal's radii can be assigned to the atoms of molecules on the basis of the closeness of approach of these atoms in crystalline substances. Diffraction studies of crystals give information about hoe molecules can approach each other and can pack

  • Q : Organic structure of cetearyl alcohol

    Can we demonstration the organic structure of cetearyl alcohol and state me what organic family it is?