--%>

Explain Drake equation

Drake equation (F. Drake; 1961): The method of estimating the number of intelligent, scientific species (that is, able to communicate with other species) in subsistence in our space.

N = R fp ne fl fi ft L.

Here,

N is the number of species explained above at any specified moment in our Galaxy. The parameters it is evaluated from are as follows:

R = the rate of star formation in our solar system (in stars per year);
fp = the fraction of stars that contain planets;
ne = the total number of habitable planets per system with planets;
fl = the fraction of habitable planets on which the life arises;
fi = the fraction of such planets on which the life develops intelligence;
ft = the fraction of such planets where the intelligence grows into a technological civilization which is capable of communication; and
L = the mean life-time of such a scientific civilization.

Out of these quantities, only the first -- R -- is recognized with anything like any reliability; this is on the order of 10 stars per year. The others, most particularly the fractions, are approximately totally pure speculation at this point. Computations made by respectable astronomers vary by something like ten orders of magnitude in the last estimation of the number of species out there.

   Related Questions in Physics

  • Q : Report on Radiobiology for Travel Space

    I have a problem in wirting a report on Radiobiology for Travel Space.  Can someone provide me a complete report on the above topic.

  • Q : Collision & Transition State Theory

    Assuming ideal gas: a)  Calculate the average velocity of a nitrogen molecule at 298K and compare to the velocity of a helium molecule at the same conditions. b)      Calculate the temperature wh

  • Q : Describe Solar water heating Solar

    Solar water heating: Solar water heaters are simple, reliable, famous and widespread. They are probably the Low Carbon technology closest to being commercially practised. The most efficient designs concentrate solar radiation onto a small diameter tub

  • Q : What is Gray Gray : Gy (after L.H.

    Gray: Gy (after L.H. Gray, 1905-1965): The derived SI unit of engrossed dose, stated as the absorbed dose in which the energy per unit mass communicated to the matter by the ionizing radiation is 1 J/kg; it therefore has units of J/kg

  • Q : What is Geometrized units Geometrized

    Geometrized units: The system of units whereby certain basic constants (G, c, k, and h) are set to unison. This makes computations in certain theories, like general relativity, much simpler to deal with, as such constants appear often.

    Q : Explain Maxwells equations and its

    Explain Maxwells equations and its four elegant equation? Maxwell's equations (J.C. Maxwell; 1864): The four elegant equations that explain classical electroma

  • Q : Explain Drake equation Drake equation

    Drake equation (F. Drake; 1961): The method of estimating the number of intelligent, scientific species (that is, able to communicate with other species) in subsistence in our space. N

  • Q : What is basic SI unit of electric

    basic SI unit of electric current is termed as Ampere: A (after A.M. Ampere, 1775-1836) The basic SI unit of electric current, stated as the current that, when going via two infinitely-long parallel conductors of v

  • Q : Define Fermats principle Fermat's

    Fermat's principle: principle of least time (P. de Fermat): The principle, put onward by P. de Fermat that explains the path taken by a ray of light among any two points in a system is for all time the path which takes the least time.

  • Q : Explain Poisson equation and Poisson

    Explain Poisson equation and Poisson spot: Poisson equation (S.D. Poisson): The differential form of Gauss' law, that is, div E = rho, Pois