--%>

What is Distillation

Separation by distillation can be described with a boiling point diagram. 

The important process of distillation can now be investigated. From the boiling point diagram one can see that if a small amount of vapour were removed from a liquid of composition a, the vapour would have a composition higher in the more voltaic component than the original solution a. such a single step is, of course, inadequate for any appreciable separation of two components unless they have extremely different boiling points. In practice, a process of fractional distillation is used, in which the separation step is just described is, in effect, repeated by condensing some of the vapour, boiling off some vapour from this new liquid, collecting and vaporizing this product, and so forth. This procedure has the effect of stepping across the boiling point diagram.

The efficiency of a distillation column is determined by the number of theoretical plates to which the separation it performs corresponds. For example, a column supplied with a charge of composition a, is operated at total reflux until equilibrium is established. A small sample of distillate is then drawn off and analyzed and has, say, composition b. the separation that has resulted corresponds to four evaporations and condensations, and the column is said to have four theoretical plates.

For a solution showing a maximum vapour pressure and a maximum boiling point, the distillation process is indicated by the dashed lines. Regardless of the initial solution, distillation in a fractional distillation unit results ultimately in a distillate of the composition of the maximum boiling point mixture. One or the other of the pure components could be prepared only by working with the residue. The most important commercial solution that shows this behavior is the water ethanol system. Fermentation processes result in an ethanol concentration of about 10 percent. The object of distillation is to increase this concentration and possibly to yield pure ethanol. The boiling point diagram shows that distillation at atmospheric pressure can yield, at best, a distillate of 95 percent ethanol.

A different situation arises with the solutions that shows a maximum in their boiling points curves, like the system of such a solution which is merely boiled away, the residue will approach the composition corresponding to the maximum of the boiling point curve and the boiling point at this temperature and will not been reached, the remaining solution will boil at this temperature and will not change its composition.

Although in the case of an azeotrope we are dealing with a constant temperature constant composition boiling mixture, this mixture is not to be regarded as a compound that is formed between the two components. A change in the total pressure is usually sufficient to show that the azeotropic composition can be changed.

   Related Questions in Chemistry

  • Q : Problem on making solutions The weight

    The weight of pure NaOH needed to made 250cm3 of 0.1 N solution is: (a) 4g  (b) 1g  (c) 2g  (d) 10g Choose the right answer from above.

  • Q : Analytical chemistry 37% weight of HCl

    37% weight of HCl and density is 1.1g/ml. find molarity of HCl

  • Q : Dipole moment direction for the methanol

    Briefly describe the dipole moment direction for the methanol?

  • Q : Determining highest normality What is

    What is the correct answer. Which of the given solutions contains highest normality: (i) 8 gm of KOH/litre (ii) N phosphoric acid (iii) 6 gm of NaOH /100 ml (iv) 0.5M H2SO4

  • Q : Dipole attractions-London dispersion

    Describe how dipole attractions, London dispersion forces and the hydrogen bonding identical?

  • Q : Molarity of sodium hydroxide Can

    Can someone please help me in getting through this problem. Determine the molarity of a solution having 5g of sodium hydroxide in 250ml  solution is: (i) 0.5  (ii) 1.0  (iii) 2.0   (d) 0.1Answer: The right answer i

  • Q : How alkyl group reactions takes place?

    Halogenations: ethers react with chlorine and bromine to give substitution products. The extent of halogenations depends upon the conditions of reacti

  • Q : Explain the catalyst definition and

    Catalyst is a substance which accelerates the rate of a chemical reaction without undergoing any change in its chemical composition or mass during the reaction. The phenomenon of increasing the rate of a reaction with the help of a catalyst is known as catalysis.

  • Q : Problem on molecular weight of solid

    The vapor pressure of pure benzene at a certain temperature is 200 mm Hg. At the same temperature the vapor pressure of a solution containing 2g of non-volatile non-electrolyte solid in 78g of benzene is 195 mm Hg. What is the molecular weight of solid:

  • Q : Theory of three dimensional motion

    Partition function; that the translational energy of 1 mol of molecules is 3/2 RT will come as no surprise. But the calculation of this result further illustrates the use of quantized states and the partition function to obtain macroscopic properties. The partition fu