Explain Davisson-Germer experiment
Davisson-Germer experiment (C.J. Davisson, L.H. Germer; 1927): The experiment which conclusively proved the wave nature of electrons; diffraction patterns were examined by an electron beam penetrating into the nickel target.
Tardon: A particle that has a positive real mass and travels at a speed very less than c in all inertial frames.
What is Farad or SI unit of capacitance? Farad: F (after M. Faraday, 1791-1867): The derived SI unit of the capacitance stated as the capacitance in a capacitor that, when charged to 1 C, contains
Cosmological constant (Lambda): The constant mentioned to the Einstein field equation, proposed to admit the static cosmological solutions. At the time the present philosophical view was steady-state model of the space, where the Universe has been aro
What do you understand by term ray casting? Explain briefly?
Cosmic censorship conjecture (R. Penrose, 1979): The conjecture, so far wholly undemonstrated in the context of general relativity, that all singularities (that is with the possible exception of the big bang singularity) are attended
Weber: Wb (after W. Weber, 1804-1891): The derived SI unit of magnetic flux equivalent to the flux that, connecting a circuit of one turn, generates in it an electromotive force of 1 V as it is decreased to zero at a uniform rate in a period of 1 s; i
Ohm: Omega: O (after G. Ohm, 1787-1854) The derived SI unit of electric resistance, stated as the resistance among two points on a conductor whenever a constant potential difference of 1 V generates a current of 1 A in the conductor;
Gauss' law for magnetic fields (K.F. Gauss): The magnetic flux via a closed surface is zero (0); no magnetic charges present; in its differential form, div B = 0
Singularity: The center of a black hole, where the curvature of space-time is maximal. At singularity, the gravitational tides deviate; no solid object can yet theoretically survive beating the singularity. Though singularities usually predict inconsi
Explain Maxwells equations and its four elegant equation? Maxwell's equations (J.C. Maxwell; 1864): The four elegant equations that explain classical electroma
18,76,764
1936535 Asked
3,689
Active Tutors
1443620
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!