--%>

Explain Daltons law of partial pressures

Dalton's law of partial pressures (J. Dalton): The net pressure of a mixture of ideal gases is equivalent to the sum of the partial pressures of its components; which is the sum of the pressures which each component would exert when it were present all alone and occupied similar volume as the mixture.

   Related Questions in Physics

  • Q : Explain Casimir effect Casimir effect

    Casimir effect (Casimir): The quantum mechanical effect, where two very big plates positioned close to each other will experience an attractive force, in the nonattendance of other forces. The cause is implicit particle-antiparticle p

  • Q : Define Ehrenfest paradox Ehrenfest

    Ehrenfest paradox (Ehernfest, 1909): The special relativistic "paradox" including a fast rotating disc. As any radial segment of the disc is perpendicular to the direction of motion, there must be no length contraction of the radius;

  • Q : Features or characteristics of dead

    Write a short note on the features or characteristics of dead stars?

  • Q : Define Atwood's machine Atwood's

    Atwood's machine: The weight-and-pulley system devised to compute the acceleration due to gravity at Earth's surface by computing the total acceleration of a set of weights of identified mass about a frictionless pulley.

  • Q : Define Van der Waals force Van der

    Van der Waals force (J.D. van der Waals): The forces responsible for non-ideal behavior of gases, and for lattice energy of molecular crystals. There are three main causes: dipole-dipole interaction; dipole-induced dipole moments; and dispersion a for

  • Q : What is Bode's law Bode's law :

    Bode's law: Titius-Bode law - The mathematical formula that generates, with a fair quantity of accuracy, the semi major axes of the planets in out of order from the Sun. Write down the progression 0, 3, 6, 12, 24,

  • Q : What is Kirchhoffs law of radiation

    Kirchhoff's law of radiation (G.R. Kirchhoff): The emissivity of a body is equivalent to its absorbptance at similar temperature.

  • Q : Problem on beam For the beam

    For the beam illustrated below, we require to determine: (A) the support reactions

  • Q : Problem on synchronous TDM We require

    We require using synchronous TDM and joining 20 digital sources, each of 100 Kbps. Each and every output slot carries 1 bit for each digital source, however one extra bit is added up to each frame for synchronization.

    Q : Define Hoop conjecture Hoop conjecture

    Hoop conjecture (K.S. Thorne, 1972): The conjecture (as so far unproven, although there is substantial proof to support it) that a non-spherical object, non-spherically compressed, will only form a black hole whenever all parts of the