--%>

Explain Cosmological constant

Cosmological constant (Lambda): The constant mentioned to the Einstein field equation, proposed to admit the static cosmological solutions. At the time the present philosophical view was steady-state model of the space, where the Universe has been around for unlimited time. Prior analysis of the field equation pointed that the general relativity permitted dynamic cosmological models only (ones which are either contracting or expanding), however no static models. Einstein mentioned the most natural aberration to the field equation which he could think of: the addition of a term proportional to the space time metric tensor, g, with constant of proportionality being the cosmological constant as:

G + Lambda g = 8 pi T.

Hubble's afterward discovery of the expansion of the Universe pointed that the introduction of the cosmological constant was needless; had Einstein believed what his field equation was stating him, he could have declared the expansion of the Universe as perhaps the supreme and most convincing prediction of general relativity; he termed this the "greatest blunder of my life."

   Related Questions in Physics

  • Q : Non-Parametric Tests Activity

    Activity 9:   Non-Parametric Tests    4Non-Parametric Tests While you have learned a number of parametric statistical techniques, you are also aware that if the assumptions related to

  • Q : Explain Planck radiation law Planck

    Planck radiation law: The law which explained blackbody radiation better than its precursor, therefore resolving the ultraviolet catastrophe. This is based on the supposition that electromagnetic radiation is quantized.

    Q : Solution Of Laplace’s Equation 1. Solve

    1. Solve Laplace's equation for the electrical potential between two infinite parallel plates, which have a charge density per unit area -on one plate and a charge density per unit area -! on the second plate, and determine the electric field between the plates from t

  • Q : Define Stefan-Boltzmann constant

    Stefan-Boltzmann constant: sigma (Stefan, L. Boltzmann): The constant of proportionality exist in the Stefan-Boltzmann law. It is equivalent to 5.6697 x 10-8 W/m2/K4.

  • Q : Define Schwarzschild radius

    Schwarzschild radius: The radius ‘r’ of the event horizon for a Schwarzschild black hole of mass m is specified by (in geometrized units) r = 2 m. In its conventional units: r = 2 G m/c2

  • Q : Explain Ohms law Ohm's law (G. Ohm;

    Ohm's law (G. Ohm; 1827): The ratio of the potential difference among the ends of a conductor to the current flowing via it is constant; the constant of proportionality is termed as the resistance, and is distinct for different materials.

  • Q : Explain Davisson-Germer experiment

    Davisson-Germer experiment (C.J. Davisson, L.H. Germer; 1927): The experiment which conclusively proved the wave nature of electrons; diffraction patterns were examined by an electron beam penetrating into the nickel target.

  • Q : What is Refraction law Refraction law:

    Refraction law: For a wave-front travelling via a boundary among two media, the first with a refractive index of n1, and the other with one of n2, the angle of incidence theta is associated to the angle of refraction phi by:

  • Q : Gas encompass density or not Explain in

    Explain in brief that the gas encompass density or not?

  • Q : What do you mean by the term nucleus

    What do you mean by the term nucleus? Describe in brief.