--%>

Explain Cosmological constant

Cosmological constant (Lambda): The constant mentioned to the Einstein field equation, proposed to admit the static cosmological solutions. At the time the present philosophical view was steady-state model of the space, where the Universe has been around for unlimited time. Prior analysis of the field equation pointed that the general relativity permitted dynamic cosmological models only (ones which are either contracting or expanding), however no static models. Einstein mentioned the most natural aberration to the field equation which he could think of: the addition of a term proportional to the space time metric tensor, g, with constant of proportionality being the cosmological constant as:

G + Lambda g = 8 pi T.

Hubble's afterward discovery of the expansion of the Universe pointed that the introduction of the cosmological constant was needless; had Einstein believed what his field equation was stating him, he could have declared the expansion of the Universe as perhaps the supreme and most convincing prediction of general relativity; he termed this the "greatest blunder of my life."

   Related Questions in Physics

  • Q : Abhi what should be the choice of

    what should be the choice of standard unit.

  • Q : Define Determinism principle

    Determinism principle: The principle that when one knows the state to an unlimited accuracy of a system at one point in time, one would be capable to predict the state of that system with unlimited accuracy at any other time, past or the future. For i

  • Q : Define Einstein-Podolsky-Rosen effect

    Einstein-Podolsky-Rosen effect: EPR effect: Consider the subsequent quantum mechanical thought-experiment: Take a particle that is at rest and has spun zero (0). This spontaneously decays into two fermions (spin 1/2 particles), that stream away in the

  • Q : Explain Rayleigh-Jeans law

    Rayleigh-Jeans law: For a blackbody at the thermodynamic temperature T, the radiance R over a range of frequencies between the nu and nu + dnu is specified by: R = 2 pi nu2 k T/c2.<

  • Q : Dynamic strain aging and the strain

    What is the basic difference among the dynamic strain aging and the strain aging?

  • Q : Explain Ideal gas equation Ideal gas

    Ideal gas equation: The equation that sums up the ideal gas laws in one simple equation, P V = n R T, Here V is the volume, P is the pressure, n is the

  • Q : Problem on two coupled coils connected

    In a series adding connection, two coupled coils have equivalent inductances LA; in a series opposing connection, LB. Determine an expression for M in terms of LA and LB. What does the outcome suggest?

  • Q : Explain Coulombs law Coulomb's law (C.

    Coulomb's law (C. de Coulomb): The basic law for electrostatics, equivalent to Newton's law of universal gravitation. It defines that the force between two point charges is proportional to the arithmetical product of their respective

  • Q : Nuclear Physics Homework Help NUCLEAR

    NUCLEAR PHYSICS (PHY555) HOMEWORK #1 1. Calculate the luminosity for a beam of protons of 1 µA colliding with a stationary liquid hydrogen target 30 cm long. Compare this to a typical colliding beam luminosity of ∼1034 cm-2

  • Q : What is Laplace equation Laplace

    Laplace equation (P. Laplace): For the steady-state heat conduction in 1-dimension, the temperature distribution is the explanation to Laplace's equation, which defines that the second derivative of temperature with respect to displac