--%>

Explain Cosmological constant

Cosmological constant (Lambda): The constant mentioned to the Einstein field equation, proposed to admit the static cosmological solutions. At the time the present philosophical view was steady-state model of the space, where the Universe has been around for unlimited time. Prior analysis of the field equation pointed that the general relativity permitted dynamic cosmological models only (ones which are either contracting or expanding), however no static models. Einstein mentioned the most natural aberration to the field equation which he could think of: the addition of a term proportional to the space time metric tensor, g, with constant of proportionality being the cosmological constant as:

G + Lambda g = 8 pi T.

Hubble's afterward discovery of the expansion of the Universe pointed that the introduction of the cosmological constant was needless; had Einstein believed what his field equation was stating him, he could have declared the expansion of the Universe as perhaps the supreme and most convincing prediction of general relativity; he termed this the "greatest blunder of my life."

   Related Questions in Physics

  • Q : What is Reflection law Reflection law :

    Reflection law: For a wave-front intersecting a reflecting surface, the angle of incidence is equivalent to the angle of reflection, in the similar plane stated by the ray of incidence and the normal.

  • Q : Faradays laws of electrolysis or

    Explain Faradays laws of electrolysis or describe Faradays first law and Faradays second law? Faraday's laws of electrolysis (M. Faraday):

  • Q : Explain Boyle's law Boyle's law (R.

    Boyle's law (R. Boyle; 1662); Mariotte's law (E. Mariotte; 1676) - The product result of the volume and pressure of an ideal gas at constant (steady) temperature is constant.

  • Q : Formula for acceleration What is the

    What is the appropriate formula employed to compute the acceleration? Explain in brief.

  • Q : Define Constancy principle Constancy

    Constancy principle (A. Einstein): One of the postulates of Sir Einstein's special theory of relativity that puts forth that the speed of light in vacuum is computed as similar speed to all observers, in spite of of their relative mot

  • Q : What are Trojan satellites Trojan

    Trojan satellites: Satellites that orbit a body at one or the other Trojan points associative to a secondary body. There are numerous illustrations of this in our own solar system: a collection of asteroids that orbit in the Trojan points of Jupiter;

  • Q : Becquerel Becquerel : Bq (after A.H.

    Becquerel: Bq (after A.H. Becquerel, 1852-1908) - The derived SI unit of the activity stated as the activity of radionuclide decay at a rate, on the average, of one nuclear transition every 1 s; it hence has units of s-1.

  • Q : What is baryon decay Baryon decay - The

    Baryon decay -The idea expected by several grand-unified theories, those classes of subatomic particles termed as baryons (of which the nucleons -- neutrons and protons -- are members) are not eventually stable however indeed de

  • Q : Black-hole dynamic laws or laws of

    Explain  laws of black-hole dynamics or First law of black hole dynamics and Second law of black hole dynamics? 

    Q : Explain Joules laws and Joule's

    Joule's laws (J.P. Joule) Joule's first law: The heat Q generated whenever a current I flows via a resistance R for a specified time t is specified by: Q = I2