--%>

Explain Black–Scholes model

Explain Black–Scholes model.

E

Expert

Verified

The Black-Scholes model is depends on geometric Brownian motion for asset price S as

dS = µSdt + σSdX.

The Black-Scholes partial differential equation for value V of an alternative is then

∂V/∂t + ½ σ2S2 (∂2V/∂S2) + rS (∂V/∂S) - rV = 0

   Related Questions in Mathematics

  • Q : Explain lognormal stochastic

    Explain lognormal stochastic differential equation for evolution of an asset.

  • Q : Problem on Fermats method A public key

    A public key for RSA is published as n = 17947 and a = 3. (i) Use Fermat’s method to factor n. (ii) Check that this defines a valid system and find the private key X.

    Q : How do it? integral e^(-t)*e^(tz) t

    integral e^(-t)*e^(tz) t between 0 and infinity for Re(z)<1

  • Q : Logic and math The homework is attached

    The homework is attached in the first two files, it's is related to Sider's book, which is "Logic for philosophy" I attached this book too, it's the third file.

  • Q : Econ For every value of real GDP,

    For every value of real GDP, actual investment equals

  • Q : Mathematical Method for Engineers The

     The function is clearly undefined at , but despite all of this the function does have a limit as approaches 0. a) Use MATLAB and ezplot to sketch for , and use the zoom on facility to guess the . You need to include you M-file, outp

  • Q : Formal logic It's a problem set, they

    It's a problem set, they are attached. it's related to Sider's book which is "Logic to philosophy" I attached the book too. I need it on feb22 but feb23 still work

  • Q : Probability and Stochastic assignment

    Introduction to Probability and Stochastic Assignment 1: 1. Consider an experiment in which one of three boxes containing microchips is chosen at random and a microchip is randomly selected from the box.

  • Q : Explain Black–Scholes model Explain

    Explain Black–Scholes model.

  • Q : Law of iterated expectations for

     Prove the law of iterated expectations for continuous random variables. 2. Prove that the bounds in Chebyshev's theorem cannot be improved upon. I.e., provide a distribution that satisfies the bounds exactly for k ≥1, show that it satisfies the bounds exactly, and draw its PDF. T