--%>

Explain alcohols and phenols in organic chemistry.

Alcohols and phenols are the compounds containing one or more hydroxyl groups (- OH). The alcohols contain the -OH group attached to alkyl group whereas in phenols, the -OH group is attached to aromatic ring. These are classified as mono-, di- and trihydric alcohols or phenols according to the number of -OH groups contained in their molecules. Some examples of mono-, di- and trihydric alcohols and phenols are as follows:

    Alcohols

2399_alcohol and phenol.png 

It may be noted that the aromatic compounds in which -OH group is not directly attached to benzene ring are not phenols but are called aromatic alcohols. These may also be called as aryl derivatives of aliphatic alcohols. When four or more hydroxyl groups are present, they are called polyhydric alcohols or polyhydric phenols.

Monohydric alcohols may be further classified according to the hybrid state of the carbon atom to which the -OH group is attached.
    
Compounds containing Csp3 ) -OH bond

In this type of alcohols, the -OH group is attached to a sp3 hybridised carbon atom. They are further classify as follows:

Primary (1°), secondary (2°) and tertiary (3°) alcohols

Monohydric alcohols are classified as primary, secondary or tertiary alcohols depending upon whether the hydroxyl group is attached to a primary, secondary or tertiary carbon atom. For instance,

1240_alcohol and phenol1.png 

Allylic alcohols: in allylic alcohols, the -OH group is attached to a sp3-hybridised carbon next to the carbon-carbon double bond, that is to an allylic carbon. For instance,

2066_alcohol and phenol2.png 

Benzylic alcohols: in benzlylic alcohols, the -OH group is attached to a sp3 -hybridised carbon atom next to an aromatic ring. Allylic and benzylic alcohols can be secondary, primary or tertiary.
    
Compounds containing Csp3 )-OH bond:

These alcohols include -OH group bonded to a carbon-carbon double bond i.e. to a vinylic carbon or to an aryl carbon. For example, vinylic alcohols and phenols belong to this class of compounds.

   Related Questions in Chemistry

  • Q : Question on seminormal solution Provide

    Provide solution of this question. The weight of sodium carbonate required to prepare 500 ml of a seminormal solution is: (a) 13.25 g (b) 26.5 g (c) 53 g (d) 6.125 g

  • Q : Inorganic Chemistry Inorganic

    Inorganic Chemistry:In the year 1869, Russian Chemist Dmitry Mendeleyev forms the periodic table of the element. Since Newlands did before him in the year 1863, Mendeleyev categorizes the el

  • Q : Problem on preparing of a solution Give

    Give me answer of this question. How many grams of CH3OH should be added to water to prepare 150 solution of@M CH3 OH: (a) 9.6 (b) 2.4 (c) 9.6x 103 (d) 2.4 x103

  • Q : Explain the preparation of phenols. The

    The methods used for the preparation of phenols are given below:    From aryl sulphonic acids

  • Q : Explain gels and its various categories.

    Certain sols have the property of setting to a semi-solid, jelly-like form by enclosing the entire amount of liquid within itself when they are present at high concentrations. This process is called gelation and colloidal systems with jelly-like appearance are known as gels. Some common examples

  • Q : Death cap musrooms the death cap

    the death cap mushroom based on your knowledge of the biochemistry of dna and rna

  • Q : Laws of Chemical Combination Laws of

    Laws of Chemical Combination- In order to understand the composition of the compounds, it is necessary to have a theory which accounts for both qualitative and quantitative observations during chem

  • Q : Colligative properties give atleast two

    give atleast two application of following colligative properties

  • Q : Explosions produce carbon dioxide

    Illustrate all the explosions produce carbon dioxide?

  • Q : Explain Rotational Vibrational Spectra

    The infrared spectrum of gas samples shows the effect of rotational-energy changes along with the vibrational energy change.As we know from the interpretations given to thermodynamic properties of gases, gas molecules are simultaneously rotating and vibrating. It follows that an absor