--%>

Explain alcohols and phenols in organic chemistry.

Alcohols and phenols are the compounds containing one or more hydroxyl groups (- OH). The alcohols contain the -OH group attached to alkyl group whereas in phenols, the -OH group is attached to aromatic ring. These are classified as mono-, di- and trihydric alcohols or phenols according to the number of -OH groups contained in their molecules. Some examples of mono-, di- and trihydric alcohols and phenols are as follows:

    Alcohols

2399_alcohol and phenol.png 

It may be noted that the aromatic compounds in which -OH group is not directly attached to benzene ring are not phenols but are called aromatic alcohols. These may also be called as aryl derivatives of aliphatic alcohols. When four or more hydroxyl groups are present, they are called polyhydric alcohols or polyhydric phenols.

Monohydric alcohols may be further classified according to the hybrid state of the carbon atom to which the -OH group is attached.
    
Compounds containing Csp3 ) -OH bond

In this type of alcohols, the -OH group is attached to a sp3 hybridised carbon atom. They are further classify as follows:

Primary (1°), secondary (2°) and tertiary (3°) alcohols

Monohydric alcohols are classified as primary, secondary or tertiary alcohols depending upon whether the hydroxyl group is attached to a primary, secondary or tertiary carbon atom. For instance,

1240_alcohol and phenol1.png 

Allylic alcohols: in allylic alcohols, the -OH group is attached to a sp3-hybridised carbon next to the carbon-carbon double bond, that is to an allylic carbon. For instance,

2066_alcohol and phenol2.png 

Benzylic alcohols: in benzlylic alcohols, the -OH group is attached to a sp3 -hybridised carbon atom next to an aromatic ring. Allylic and benzylic alcohols can be secondary, primary or tertiary.
    
Compounds containing Csp3 )-OH bond:

These alcohols include -OH group bonded to a carbon-carbon double bond i.e. to a vinylic carbon or to an aryl carbon. For example, vinylic alcohols and phenols belong to this class of compounds.

   Related Questions in Chemistry

  • Q : Meaning of Molar solution Molar

    Molar solution signifies 1 mole of solute present/existed in: (i) 1000g of solvent (ii) 1 litre of solvent (iii) 1 litre of solution (iv) 1000g of solution

  • Q : Molarity A solution has volume 200ml

    A solution has volume 200ml and molarity 0.1.if it is diluted 5times then calculate the molarity of reasulying solution and the amount of water added to it.

  • Q : Death cap musrooms the death cap

    the death cap mushroom based on your knowledge of the biochemistry of dna and rna

  • Q : Volume hydrogen peroxide Choose the

    Choose the right answer from following. The normality of 10 lit. volume hydrogen peroxide is: (a) 0.176 (b) 3.52 (c) 1.78 (d) 0.88 (e)17.8

  • Q : State octet rule in chemistry Explain

    Explain what is octet rule in chemistry?

  • Q : Microwave Adsorption The absorption of

    The absorption of microwave radiation increases the rotational energy of molecules and gives information about the moment of inertia of the molecules.Now we can begin the study of the spectroscopy that explores the different ways in which the energy of the

  • Q : Molality of glucose Help me to go

    Help me to go through this problem. Molecular weight of glucose is 180. A solution of glucose which contains 18 gms per litre is : (a) 2 molal (b) 1 molal (c) 0.1 molal (d)18 molal

  • Q : Question based on relative lowering of

    Give me answer of this question. When a non-volatile solute is dissolved in a solvent, the relative lowering of vapour pressure is equal to: (a) Mole fraction of solute (b) Mole fraction of solvent (c) Concentration of the solute in grams per litre (d) Concentratio

  • Q : Relative lowering of vapour pressure

    explain the process of relative lowering of vapour pressure

  • Q : Question based on maximum vapour

    Provide solution of this question. Which has maximum vapour pressure: (a) HI (b) HBr (c) HCl (d) HF