--%>

Explain a rigorous theory for Brownian motion

Explain a rigorous theory for Brownian motion developed by Wiener Norbert.

E

Expert

Verified

Mathematics of Brownian motion was to become an essential modelling device for quantitative finance decades later. The beginning point for almost all financial models, the first equation written down in many technical papers, has the Wiener process as the representation for randomness in asset prices.

   Related Questions in Mathematics

  • Q : Solve each equation by factoring A

    A college student invested part of a $25,000 inheritance at 7% interest and the rest at 6%.  If his annual interest is $1,670 how much did he invest at 6%?  If I told you the answer is $8,000, in your own words, using complete sentences, explain how you

  • Q : First-order formulas over the

    Consider the unary relational symbols P and L, and the binary relational symbol On, where P(a) and I(a) encode that a is apoint and a (sraight) line in the 2-dimensional space, respectively, while On(a,b) encodes  that a is a point, b is a line, and o lies on b.

  • Q : Where would we be without stochastic

    Where would we be without stochastic or Ito^ calculus?

  • Q : Linear programming model of a Cabinet

    A cabinet company produces cabinets used in mobile and motor homes. Cabinets produced for motor homes are smaller and made from less expensive materials than those for mobile homes. The home office in Dayton Ohio has just distributed to its individual manufacturing ce

  • Q : Uniform scaling what is uniform scaling

    what is uniform scaling in computer graphic

  • Q : The mean of the sampling distribution

    1. Caterer determines that 87% of people who sampled the food thought it was delicious. A random sample of 144 out of population of 5000 taken. The 144 are asked to sample the food. If P-hat is the proportion saying that the food is delicious, what is the mean of the sampling distribution p-hat?<

  • Q : Abstract Algebra let a, b, c, d be

    let a, b, c, d be integers. Prove the following statements: (a) if a|b and b|c. (b) if a|b and ac|bd. (c) if d|a and d|b then d|(xa+yb) for any x, y EZ

  • Q : Explain Factorisation by trial division

    Factorisation by trial division: The essential idea of factorisation by trial division is straightforward. Let n be a positive integer. We know that n is either prime or has a prime divisor less than or equal to √n. Therefore, if we divide n in

  • Q : Problem on inverse demand curves In

    In differentiated-goods duopoly business, with inverse demand curves: P1 = 10 – 5Q1 – 2Q2P2 = 10 – 5Q2 – 2Q1 and per unit costs for each and every firm equal to 1.<

  • Q : Problem on Datalog for defining

    The focus is on  the use of Datalog for defining properties  and queries on graphs. (a) Assume that P is some property of graphs  definable in the Datalog. Show that P is preserved beneath extensions  and homomo