--%>

Explain a rigorous theory for Brownian motion

Explain a rigorous theory for Brownian motion developed by Wiener Norbert.

E

Expert

Verified

Mathematics of Brownian motion was to become an essential modelling device for quantitative finance decades later. The beginning point for almost all financial models, the first equation written down in many technical papers, has the Wiener process as the representation for randomness in asset prices.

   Related Questions in Mathematics

  • Q : Explain lognormal stochastic

    Explain lognormal stochastic differential equation for evolution of an asset.

  • Q : Who firstly discovered mathematical

    Who firstly discovered mathematical theory for random walks, that rediscovered later by Einstein?

  • Q : Properties for polynomial Specify the

    Specify the important properties for the polynomial.

  • Q : Problem on Linear equations Anny, Betti

    Anny, Betti and Karol went to their local produce store to bpought some fruit. Anny bought 1 pound of apples and 2 pounds of bananas and paid $2.11.  Betti bought 2 pounds of apples and 1 pound of grapes and paid $4.06.  Karol bought 1 pound of bananas and 2

  • Q : Calculus I need it within 4 hours. Due

    I need it within 4 hours. Due time March 15, 2014. 3PM Pacific Time. (Los Angeles, CA)

  • Q : Who independently developed

    Who independently developed a model for simply pricing risky assets?

  • Q : Formulating linear program of an oil

    An oil company blends two input streams of crude oil products alkylate and catalytic cracked to meet demand for weekly contracts for regular (12,000 barrels) mind grade ( 7,500) and premium ( 4,500 barrels) gasoline’s . each week they can purchase up to 15, 000

  • Q : Bolzano-Weierstrass property The

    The Bolzano-Weierstrass property does not hold in C[0, ¶] for the infinite set A ={sinnx:n<N} : A is infinite; Show that has no “ limit points”.

  • Q : Problem on Maple (a) Solve the

    (a) Solve the following  by: (i) First reducing the system of first order differentiat equations to a second order differential equation. (ii) Decoupling the following linear system of equa

  • Q : Problem on budgeted cash collections

    XYZ Company collects 20% of a month's sales in the month of sale, 70% in the month following sale, and 5% in the second month following sale. The remainder is not collectible. Budgeted sales for the subsequent four months are: