--%>

Elementary Logic Set & Model of a Boolean Algebra

Prove that Elementary Logic Set is a Model of a Boolean Algebra

The three Boolean operations of Logic are the three logical operations of  OR ( V ), AND (upside down V), and NEGATION ~.  Addition is the logical OR , multiplication is the logical AND, and complement is the logical NEGATION.  The symbol 1 is the logical T (True), and the symbol 0 is the logical F (False) . (Just state the Boolean Algebra versions of logical statements below, the proofs are considered self-evident, we do not require Truth Tables to be written to establish their validity.)

1. State the commutative law of addition: _________________________________________

2. State the associative law of addition: ___________________________________________

3. State the law that says F is an additive identity __________________________________

4. State the commutative law of multiplication: _____________________________________

5. State the associative law of multiplication: _______________________________________

6. State the law that says T is a multiplicative identity _______________________________

7. State the distributive law of multiplication: _______________________________________

8. State the distributive law of addition: ____________________________________________

9.   State the Boolean Algebra property x  +  ˜ x  = 1 in terms of a logical statement A.

 10.   State the Boolean Algebra property x  •  ˜ x  = 0 in terms of a logical statement A.

The above ten properties are necessary and sufficient conditions to prove that Elementary Logic is indeed a model of a Boolean algebra.

11. In Elementary Logic, A implies B ( A-> B), has a Truth table, which we recall is only False (F), when B is False and A is True.  Rewrite the logical statement

A -> B in terms of the basic logical operations of AND (upside down V, we will have to use in this document the symbol ?), OR (V) and NEGATION (~).

A -> B =   

12. In terms of an Abstract Boolean Algebra, for two elements x and y define that x implies y,  x -> y using the basic operations  +,  •, and ~ of  Boolean Algebra, using the definition from Elementary Logic as your guide.

x -> y  

Recall that in Elementary Logic a Tautology is a statement which is always True, regardless of the truth values of its constituent statements., e.g.  A V ~A .

13. Write the Truth table for the logical statement (A->B)  V (B->A).   

Is (A->B)  V (B->A)  a tautology?

14. Write the Truth table for the logical statement  (B ? (A->B) ) ->A  (recall ? is unfortunately our symbol for AND, the upside down V).   

Is (B ? (A->B) ) ->A a tautology?

   Related Questions in Mathematics

  • Q : Research Areas in Medical Mathematical

    Some Research Areas in Medical Mathematical Modelling:1. Modeling and numerical simulations of the nanometric aerosols in the lower portion of the bronchial tree. 2. Multiscale mathematical modeling of

  • Q : Formal logic It's a problem set, they

    It's a problem set, they are attached. it's related to Sider's book which is "Logic to philosophy" I attached the book too. I need it on feb22 but feb23 still work

  • Q : Global And Regional Economic Development

    The Pharmatec Group, a supplier of pharmaceutical equipment, systems and services, has its head office in London and primary production facilities in the US. The company also has a successful subsidiary in South Africa, which was established in 1990. Pharmatec South A

  • Q : Who had find Monte Carlo and finite

    Who had find Monte Carlo and finite differences of the binomial model?

  • Q : Numerical solution of PDE this

    this assignment contains two parts theoretical and coding the code has to be a new. old code and modified code will appear in the university website .

  • Q : Theorem-Group is unique and has unique

    Let (G; o) be a group. Then the identity of the group is unique and each element of the group has a unique inverse.In this proof, we will argue completely formally, including all the parentheses and all the occurrences of the group operation o. As we proce

  • Q : Who derived the Black–Scholes Equation

    Who derived the Black–Scholes Equation?

  • Q : Numerical solution of PDE i want you to

    i want you to solve this assignment. this consist of two parts theoretical and coding. the code has to be created by you. no modified or copying code. you have to mention the exact solution and the proportion error. also you have to explain the sketch that you get from the code. these information

  • Q : How to calculate area of pyramid

    Calculate area of pyramid, prove equation?

  • Q : State Measuring complexity Measuring

    Measuring complexity: Many algorithms have an integer n, or two integers m and n, as input - e.g., addition, multiplication, exponentiation, factorisation and primality testing. When we want to describe or analyse the `easiness' or `hardness' of the a