--%>

Elementary Logic Set & Model of a Boolean Algebra

Prove that Elementary Logic Set is a Model of a Boolean Algebra

The three Boolean operations of Logic are the three logical operations of  OR ( V ), AND (upside down V), and NEGATION ~.  Addition is the logical OR , multiplication is the logical AND, and complement is the logical NEGATION.  The symbol 1 is the logical T (True), and the symbol 0 is the logical F (False) . (Just state the Boolean Algebra versions of logical statements below, the proofs are considered self-evident, we do not require Truth Tables to be written to establish their validity.)

1. State the commutative law of addition: _________________________________________

2. State the associative law of addition: ___________________________________________

3. State the law that says F is an additive identity __________________________________

4. State the commutative law of multiplication: _____________________________________

5. State the associative law of multiplication: _______________________________________

6. State the law that says T is a multiplicative identity _______________________________

7. State the distributive law of multiplication: _______________________________________

8. State the distributive law of addition: ____________________________________________

9.   State the Boolean Algebra property x  +  ˜ x  = 1 in terms of a logical statement A.

 10.   State the Boolean Algebra property x  •  ˜ x  = 0 in terms of a logical statement A.

The above ten properties are necessary and sufficient conditions to prove that Elementary Logic is indeed a model of a Boolean algebra.

11. In Elementary Logic, A implies B ( A-> B), has a Truth table, which we recall is only False (F), when B is False and A is True.  Rewrite the logical statement

A -> B in terms of the basic logical operations of AND (upside down V, we will have to use in this document the symbol ?), OR (V) and NEGATION (~).

A -> B =   

12. In terms of an Abstract Boolean Algebra, for two elements x and y define that x implies y,  x -> y using the basic operations  +,  •, and ~ of  Boolean Algebra, using the definition from Elementary Logic as your guide.

x -> y  

Recall that in Elementary Logic a Tautology is a statement which is always True, regardless of the truth values of its constituent statements., e.g.  A V ~A .

13. Write the Truth table for the logical statement (A->B)  V (B->A).   

Is (A->B)  V (B->A)  a tautology?

14. Write the Truth table for the logical statement  (B ? (A->B) ) ->A  (recall ? is unfortunately our symbol for AND, the upside down V).   

Is (B ? (A->B) ) ->A a tautology?

   Related Questions in Mathematics

  • Q : Properties for polynomial Specify the

    Specify the important properties for the polynomial.

  • Q : Global And Regional Economic Development

    The Pharmatec Group, a supplier of pharmaceutical equipment, systems and services, has its head office in London and primary production facilities in the US. The company also has a successful subsidiary in South Africa, which was established in 1990. Pharmatec South A

  • Q : Elasticity of Demand For the demand

    For the demand function D(p)=410-0.2p(^2), find the maximum revenue.

  • Q : How to calculate area of pyramid

    Calculate area of pyramid, prove equation?

  • Q : State Fermat algorithm The basic Fermat

    The basic Fermat algorithm is as follows: Assume that n is an odd positive integer. Set c = [√n] (`ceiling of √n '). Then we consider in turn the numbers c2 - n; (c+1)2 - n; (c+2)2 - n..... until a perfect square is found. If th

  • Q : Simulation with Arena An office of

    An office of state license bureau has two types of arrivals. Individuals interested in purchasing new plates are characterized to have inter-arrival times distributed as EXPO(6.8) and service times as TRIA(808, 13.7, 15.2); all times are in minutes. Individuals who want to renew or apply for a new d

  • Q : Econ For every value of real GDP,

    For every value of real GDP, actual investment equals

  • Q : Where would we be without stochastic

    Where would we be without stochastic or Ito^ calculus?

  • Q : Formulating linear program of an oil

    An oil company blends two input streams of crude oil products alkylate and catalytic cracked to meet demand for weekly contracts for regular (12,000 barrels) mind grade ( 7,500) and premium ( 4,500 barrels) gasoline’s . each week they can purchase up to 15, 000

  • Q : Problem on Maple (a) Solve the

    (a) Solve the following  by: (i) First reducing the system of first order differentiat equations to a second order differential equation. (ii) Decoupling the following linear system of equa